論文の概要: A Machine Learning Approach to Analyze the Effects of Alzheimer's Disease on Handwriting through Lognormal Features
- arxiv url: http://arxiv.org/abs/2405.16959v1
- Date: Mon, 27 May 2024 08:54:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 16:21:29.700048
- Title: A Machine Learning Approach to Analyze the Effects of Alzheimer's Disease on Handwriting through Lognormal Features
- Title(参考訳): 対数正規化機能によるアルツハイマー病の手書き動作の機械学習による解析
- Authors: Tiziana D'Alessandro, Cristina Carmona-Duarte, Claudio De Stefano, Moises Diaz, Miguel A. Ferrer, Francesco Fontanella,
- Abstract要約: 本稿では,Sigma-lognormalモデルから抽出した手書き機能に機械学習を適用した手法を提案する。
本研究の目的は、アルツハイマーの診断と研究を支援する支援システムを開発することである。
- 参考スコア(独自算出の注目度): 6.426661797202189
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Alzheimer's disease is one of the most incisive illnesses among the neurodegenerative ones, and it causes a progressive decline in cognitive abilities that, in the worst cases, becomes severe enough to interfere with daily life. Currently, there is no cure, so an early diagnosis is strongly needed to try and slow its progression through medical treatments. Handwriting analysis is considered a potential tool for detecting and understanding certain neurological conditions, including Alzheimer's disease. While handwriting analysis alone cannot provide a definitive diagnosis of Alzheimer's, it may offer some insights and be used for a comprehensive assessment. The Sigma-lognormal model is conceived for movement analysis and can also be applied to handwriting. This model returns a set of lognormal parameters as output, which forms the basis for the computation of novel and significant features. This paper presents a machine learning approach applied to handwriting features extracted through the sigma-lognormal model. The aim is to develop a support system to help doctors in the diagnosis and study of Alzheimer, evaluate the effectiveness of the extracted features and finally study the relation among them.
- Abstract(参考訳): アルツハイマー病は神経変性疾患の中でも最も切迫した疾患の1つであり、認知能力の低下が進行し、最悪の場合、日常生活に干渉するほど重篤になる。
現在, 治療法は存在せず, 早期診断が必要である。
手書き解析は、アルツハイマー病を含む特定の神経疾患を検出し、理解するための潜在的なツールと考えられている。
手書き解析だけではアルツハイマー病の確定診断は得られないが、いくつかの洞察を与え、総合的な評価に使用することができる。
Sigma-lognormalモデルは運動解析のために考案され、手書きにも適用できる。
このモデルは、新しい特徴と重要な特徴の計算の基盤となる、対数正規パラメータのセットを出力として返す。
本稿では,Sigma-lognormalモデルから抽出した手書き機能に機械学習を適用した手法を提案する。
本研究の目的は、アルツハイマーの診断と研究を支援する支援システムを開発し、抽出した特徴の有効性を評価し、最終的にそれらの関係を研究することである。
関連論文リスト
- Quantum Machine Learning in the Cognitive Domain: Alzheimer's Disease Study [0.0]
アルツハイマー病(英語: Alzheimer's disease、AD)は、神経変性疾患の1つである。
認知障害に影響されるタスクの1つは手書きである。
古典的人工知能(AI)手法の最近の進歩は、手書き解析によるADの検出において有望であることを示している。
論文 参考訳(メタデータ) (2023-09-15T16:50:57Z) - Detection of Alzheimer's Disease using MRI scans based on Inertia Tensor
and Machine Learning [0.0]
アルツハイマー病(英: Alzheimer's Disease)は、高齢者の神経疾患である。
我々は,慣性テンソル解析と機械学習に基づいて,MRI画像からアルツハイマー病の4つの異なる段階を検出する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-26T06:37:14Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - LAVA: Granular Neuron-Level Explainable AI for Alzheimer's Disease
Assessment from Fundus Images [15.02513291695459]
アルツハイマー病(英語: Alzheimer's Disease、AD)は、進行性神経変性疾患であり、認知症の主要な原因である。
網膜は、脳と解剖学的に結びついているため、AD検出の診断部位として仮説化されている。
我々は、グラニュラーニューロンレベル説明器(LAVA)と呼ばれる新しいモデルに依存しない説明可能なAIフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-06T18:43:10Z) - Predicting Alzheimer's Disease Using 3DMgNet [2.97983501982132]
3DMgNetはアルツハイマー病(AD)を診断するためのマルチグリッドと畳み込みニューラルネットワークの統合フレームワークである
このモデルはADとNCの分類で92.133%の精度を達成し、モデルのパラメータを大幅に削減した。
論文 参考訳(メタデータ) (2022-01-12T09:08:08Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
ソース疾患からターゲット疾患へ診断経験を移すために、低リソースの医療対話生成を提案します。
また,新しい疾患の症状相関を推論するためのコモンセンスグラフの進化を学習するグラフ進化メタラーニングフレームワークを開発した。
論文 参考訳(メタデータ) (2020-12-22T13:20:23Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
本稿では,音響的,認知的,言語的特徴を活用してマルチモーダルアンサンブルシステムを構築する新しいアーキテクチャを提案する。
時相特性を持つ特殊な人工ニューラルネットワークを使用して、アルツハイマー認知症(AD)とその重症度を検出する。
本システムでは,AD分類では最先端試験精度,精度,リコール,F1スコアが83.3%,MMSEスコア評価では4.60の最先端試験根平均二乗誤差(RMSE)が得られた。
論文 参考訳(メタデータ) (2020-08-30T21:47:26Z) - Application of Machine Learning to Predict the Risk of Alzheimer's
Disease: An Accurate and Practical Solution for Early Diagnostics [1.1470070927586016]
アルツハイマー病(AD)は500万人以上のアメリカ人の認知能力を悪化させ、医療システムに多大な負担をかけている。
本稿では,医療画像のない,臨床訪問や検査の少ないAD開発のための機械学習予測モデルを提案する。
本モデルは,2つの顕著な研究結果から,人口統計,バイオマーカー,認知テストデータを用いて訓練し,検証した。
論文 参考訳(メタデータ) (2020-06-02T14:52:51Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Unifying Neural Learning and Symbolic Reasoning for Spinal Medical
Report Generation [33.818136671925444]
本稿では,深層学習と記号論理的推論を統一することにより,人間的な学習を行うニューラル・シンボリック・ラーニング・フレームワークを提案する。
我々のアルゴリズムは、既存の脊髄構造検出手法をはるかに上回っている。
論文 参考訳(メタデータ) (2020-04-28T15:06:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。