Compositional Few-Shot Class-Incremental Learning
- URL: http://arxiv.org/abs/2405.17022v1
- Date: Mon, 27 May 2024 10:21:38 GMT
- Title: Compositional Few-Shot Class-Incremental Learning
- Authors: Yixiong Zou, Shanghang Zhang, Haichen Zhou, Yuhua Li, Ruixuan Li,
- Abstract summary: Few-shot class-incremental learning (FSCIL) is proposed to continually learn from novel classes with only a few samples.
In contrast, humans can easily recognize novel classes with a few samples.
Cognitive science demonstrates that an important component of such human capability is compositional learning.
- Score: 23.720973742098682
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Few-shot class-incremental learning (FSCIL) is proposed to continually learn from novel classes with only a few samples after the (pre-)training on base classes with sufficient data. However, this remains a challenge. In contrast, humans can easily recognize novel classes with a few samples. Cognitive science demonstrates that an important component of such human capability is compositional learning. This involves identifying visual primitives from learned knowledge and then composing new concepts using these transferred primitives, making incremental learning both effective and interpretable. To imitate human compositional learning, we propose a cognitive-inspired method for the FSCIL task. We define and build a compositional model based on set similarities, and then equip it with a primitive composition module and a primitive reuse module. In the primitive composition module, we propose to utilize the Centered Kernel Alignment (CKA) similarity to approximate the similarity between primitive sets, allowing the training and evaluation based on primitive compositions. In the primitive reuse module, we enhance primitive reusability by classifying inputs based on primitives replaced with the closest primitives from other classes. Experiments on three datasets validate our method, showing it outperforms current state-of-the-art methods with improved interpretability. Our code is available at https://github.com/Zoilsen/Comp-FSCIL.
Related papers
- Knowledge Adaptation Network for Few-Shot Class-Incremental Learning [23.90555521006653]
Few-shot class-incremental learning aims to incrementally recognize new classes using a few samples.
One of the effective methods to solve this challenge is to construct prototypical evolution classifiers.
Because representations for new classes are weak and biased, we argue such a strategy is suboptimal.
arXiv Detail & Related papers (2024-09-18T07:51:38Z) - CSCNET: Class-Specified Cascaded Network for Compositional Zero-Shot
Learning [62.090051975043544]
Attribute and object (A-O) disentanglement is a fundamental and critical problem for Compositional Zero-shot Learning (CZSL)
We propose a novel A-O disentangled framework for CZSL, namely Class-specified Cascaded Network (CSCNet)
arXiv Detail & Related papers (2024-03-09T14:18:41Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Context-Aware Ensemble Learning for Time Series [11.716677452529114]
We introduce a new approach using a meta learner that effectively combines the base model predictions via using a superset of the features that is the union of the base models' feature vectors instead of the predictions themselves.
Our model does not use the predictions of the base models as inputs to a machine learning algorithm, but choose the best possible combination at each time step based on the state of the problem.
arXiv Detail & Related papers (2022-11-30T10:36:13Z) - Learning Primitive-aware Discriminative Representations for Few-shot
Learning [28.17404445820028]
Few-shot learning aims to learn a classifier that can be easily adapted to recognize novel classes with only a few labeled examples.
We propose a Primitive Mining and Reasoning Network (PMRN) to learn primitive-aware representations.
Our method achieves state-of-the-art results on six standard benchmarks.
arXiv Detail & Related papers (2022-08-20T16:22:22Z) - KG-SP: Knowledge Guided Simple Primitives for Open World Compositional
Zero-Shot Learning [52.422873819371276]
The goal of open-world compositional zero-shot learning (OW-CZSL) is to recognize compositions of state and objects in images.
Here, we revisit a simple CZSL baseline and predict the primitives, i.e. states and objects, independently.
We estimate the feasibility of each composition through external knowledge, using this prior to remove unfeasible compositions from the output space.
Our model, Knowledge-Guided Simple Primitives (KG-SP), achieves state of the art in both OW-CZSL and pCZSL.
arXiv Detail & Related papers (2022-05-13T17:18:15Z) - Compositional Fine-Grained Low-Shot Learning [58.53111180904687]
We develop a novel compositional generative model for zero- and few-shot learning to recognize fine-grained classes with a few or no training samples.
We propose a feature composition framework that learns to extract attribute features from training samples and combines them to construct fine-grained features for rare and unseen classes.
arXiv Detail & Related papers (2021-05-21T16:18:24Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - Partial Is Better Than All: Revisiting Fine-tuning Strategy for Few-shot
Learning [76.98364915566292]
A common practice is to train a model on the base set first and then transfer to novel classes through fine-tuning.
We propose to transfer partial knowledge by freezing or fine-tuning particular layer(s) in the base model.
We conduct extensive experiments on CUB and mini-ImageNet to demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2021-02-08T03:27:05Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Compositional Few-Shot Recognition with Primitive Discovery and
Enhancing [43.478770119996184]
Few-shot learning aims at recognizing novel classes given only few training samples.
Humans can easily recognize novel classes with only few samples.
We propose an approach to learn a feature representation composed of important primitives.
arXiv Detail & Related papers (2020-05-12T21:01:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.