論文の概要: FUGNN: Harmonizing Fairness and Utility in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2405.17034v2
- Date: Tue, 13 Aug 2024 15:04:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 22:15:08.215114
- Title: FUGNN: Harmonizing Fairness and Utility in Graph Neural Networks
- Title(参考訳): FUGNN: グラフニューラルネットワークにおけるフェアネスとユーティリティの調和
- Authors: Renqiang Luo, Huafei Huang, Shuo Yu, Zhuoyang Han, Estrid He, Xiuzhen Zhang, Feng Xia,
- Abstract要約: グラフニューラルネットワーク(GNN)は、フェアネスの優先順位付けが利便性を損なう可能性があるため、難しいトレードオフに直面していることが多い。
我々は、スペクトルグラフ理論のレンズを通して公正性を再検討し、スペクトルグラフ学習の枠組みの中で公正性と有用性を再構築することを目的としている。
フェアネスとユーティリティの対立を調和させる新しいスペクトルグラフ学習手法であるFUGNNを提案する。
- 参考スコア(独自算出の注目度): 9.291332158418411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness-aware Graph Neural Networks (GNNs) often face a challenging trade-off, where prioritizing fairness may require compromising utility. In this work, we re-examine fairness through the lens of spectral graph theory, aiming to reconcile fairness and utility within the framework of spectral graph learning. We explore the correlation between sensitive features and spectrum in GNNs, using theoretical analysis to delineate the similarity between original sensitive features and those after convolution under different spectra. Our analysis reveals a reduction in the impact of similarity when the eigenvectors associated with the largest magnitude eigenvalue exhibit directional similarity. Based on these theoretical insights, we propose FUGNN, a novel spectral graph learning approach that harmonizes the conflict between fairness and utility. FUGNN ensures algorithmic fairness and utility by truncating the spectrum and optimizing eigenvector distribution during the encoding process. The fairness-aware eigenvector selection reduces the impact of convolution on sensitive features while concurrently minimizing the sacrifice of utility. FUGNN further optimizes the distribution of eigenvectors through a transformer architecture. By incorporating the optimized spectrum into the graph convolution network, FUGNN effectively learns node representations. Experiments on six real-world datasets demonstrate the superiority of FUGNN over baseline methods. The codes are available at https://github.com/yushuowiki/FUGNN.
- Abstract(参考訳): フェアネスを意識したグラフニューラルネットワーク(GNN)は、フェアネスの優先順位付けが実用性を損なう可能性があるため、難しいトレードオフに直面していることが多い。
本研究では,スペクトルグラフ理論のレンズによるフェアネスの再検討を行い,スペクトルグラフ学習の枠組み内でのフェアネスと有用性を考察する。
我々は,GNNにおける感度特徴とスペクトルの相関関係を理論的解析を用いて検討し,異なるスペクトル下での畳み込み後の特徴と元の感度特徴との類似性を明らかにする。
本分析により,最大等級固有値に関連付けられた固有ベクトルが方向類似性を示す場合に,類似性の影響の低減が明らかとなった。
これらの理論的知見に基づいて、フェアネスとユーティリティの対立を調和させる新しいスペクトルグラフ学習手法であるFUGNNを提案する。
FUGNNは、スペクトルを切断し、符号化プロセス中に固有ベクトル分布を最適化することにより、アルゴリズムの公正性と有用性を保証する。
公平を意識した固有ベクトル選択は、実用性の犠牲を同時に最小化しつつ、繊細な特徴に対する畳み込みの影響を低減する。
FUGNNはさらにトランスアーキテクチャを通じて固有ベクトルの分布を最適化する。
最適化されたスペクトルをグラフ畳み込みネットワークに組み込むことで、FUGNNはノード表現を効果的に学習する。
6つの実世界のデータセットに対する実験は、ベースライン法よりもFUGNNの方が優れていることを示した。
コードはhttps://github.com/yushuowiki/FUGNNで公開されている。
関連論文リスト
- Rank and Align: Towards Effective Source-free Graph Domain Adaptation [16.941755478093153]
グラフニューラルネットワーク(GNN)は、グラフ領域適応において素晴らしいパフォーマンスを達成した。
しかし、プライバシやストレージ上の懸念から、大規模なソースグラフは現実のシナリオでは利用できない可能性がある。
そこで我々は,Range and Align (RNA)と呼ばれる新しいGNNベースのアプローチを導入し,ロバストセマンティクス学習のためのスペクトルセレーションとグラフ類似性をランク付けする。
論文 参考訳(メタデータ) (2024-08-22T08:00:50Z) - GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet)は、任意のグラフスペクトルフィルタを設計するためのシンプルで効果的なスキームを提供する理論的なサポートを持つ、新しいグラフニューラルネットワークである。
我々の知る限り、我々の研究はグラフGNNスペクトルフィルタの設計にSSMを使った最初のものである。
9つの公開ベンチマークでの大規模な実験により、GrassNetは現実世界のグラフモデリングタスクにおいて優れたパフォーマンスを達成することが明らかになった。
論文 参考訳(メタデータ) (2024-08-16T07:33:58Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - ASWT-SGNN: Adaptive Spectral Wavelet Transform-based Self-Supervised
Graph Neural Network [20.924559944655392]
本稿では,適応スペクトルウェーブレット変換を用いた自己教師付きグラフニューラルネットワーク(ASWT-SGNN)を提案する。
ASWT-SGNNは高密度スペクトル領域におけるフィルタ関数を正確に近似し、コストの高い固有分解を避ける。
ノード分類タスクにおける最先端モデルに匹敵するパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-10T03:07:42Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
グラフニューラルネットワーク(GNN)の文脈におけるNTKとアライメントについて検討する。
その結果、2層GNNのアライメントの最適性に関する理論的保証が確立された。
これらの保証は、入力と出力データの相互共分散の関数であるグラフシフト演算子によって特徴づけられる。
論文 参考訳(メタデータ) (2023-10-16T19:54:21Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
従来の知恵は、スペクトル畳み込みネットワークは無向グラフ上にしか展開できないと規定している。
ここでは、このグラフフーリエ変換への伝統的な依存が超フルであることを示す。
本稿では,新たに開発されたフィルタの周波数応答解釈を行い,フィルタ表現に使用するベースの影響を調査し,ネットワークを基盤とする特性演算子との相互作用について議論する。
論文 参考訳(メタデータ) (2023-10-03T17:42:09Z) - Improving Fairness in Graph Neural Networks via Mitigating Sensitive
Attribute Leakage [35.810534649478576]
グラフニューラルネットワーク(GNN)は、グラフ上のノード表現を学習する際の大きな力を示している。
GNNは、トレーニングデータから歴史的偏見を継承し、予測における差別的偏見をもたらす可能性がある。
本研究ではFairVGNN(Fair View Graph Neural Network)を提案する。
論文 参考訳(メタデータ) (2022-06-07T16:25:20Z) - How Powerful are Spectral Graph Neural Networks [9.594432031144715]
スペクトルグラフニューラルネットワーク(Spectral Graph Neural Network)は、グラフ信号フィルタに基づくグラフニューラルネットワークの一種である。
まず、非線形性のないスペクトルGNNでさえ任意のグラフ信号を生成することを証明した。
また、スペクトルGNNの表現力とグラフアイソモーフィズム(GI)テストの関連性を確立する。
論文 参考訳(メタデータ) (2022-05-23T10:22:12Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
グラフニューラルネットワーク(GNN)は、グラフデータのテストとトレーニングを同一の分布から行うことで、優れたパフォーマンスを実現している。
既存のGNNでは、テストとグラフデータのトレーニングの間に分散シフトが存在する場合、その性能が著しく低下する。
本稿では,学習グラフと異なる分布を持つ未確認試験グラフに対して,満足な性能を実現するために,アウト・オブ・ディストリビューション一般化グラフニューラルネットワーク(OOD-GNN)を提案する。
論文 参考訳(メタデータ) (2021-12-07T16:29:10Z) - Bridging the Gap Between Spectral and Spatial Domains in Graph Neural
Networks [8.563354084119062]
空間領域やスペクトル領域におけるグラフ畳み込み過程の等価性を示す。
提案フレームワークは、空間領域に適用しながら、独自の周波数プロファイルを持つスペクトル領域の新しい畳み込みを設計するために使用される。
論文 参考訳(メタデータ) (2020-03-26T01:49:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。