論文の概要: BeamVQ: Aligning Space-Time Forecasting Model via Self-training on Physics-aware Metrics
- arxiv url: http://arxiv.org/abs/2405.17051v1
- Date: Mon, 27 May 2024 11:07:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 15:52:11.681797
- Title: BeamVQ: Aligning Space-Time Forecasting Model via Self-training on Physics-aware Metrics
- Title(参考訳): BeamVQ:物理を意識した自己学習による時空間予測モデル
- Authors: Hao Wu, Xingjian Shi, Ziyue Huang, Penghao Zhao, Wei Xiong, Jinbao Xue, Yangyu Tao, Xiaomeng Huang, Weiyan Wang,
- Abstract要約: 本研究では、ベクトル量子化(BeamVQ)によるemphBeam探索を提案し、データ駆動時空予測モデルの物理的アライメントを強化する。
BeamVQは、物理を意識したメトリクスでフィルタリングされた自己生成サンプルのモデルを訓練する。
実験によると、BeamVQは5つのデータセットで10のバックボーンに対して平均的な統計スキルスコアを32%以上向上させただけでなく、物理学を意識したメトリクスを大幅に強化した。
- 参考スコア(独自算出の注目度): 18.67368024029461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven deep learning has emerged as the new paradigm to model complex physical space-time systems. These data-driven methods learn patterns by optimizing statistical metrics and tend to overlook the adherence to physical laws, unlike traditional model-driven numerical methods. Thus, they often generate predictions that are not physically realistic. On the other hand, by sampling a large amount of high quality predictions from a data-driven model, some predictions will be more physically plausible than the others and closer to what will happen in the future. Based on this observation, we propose \emph{Beam search by Vector Quantization} (BeamVQ) to enhance the physical alignment of data-driven space-time forecasting models. The key of BeamVQ is to train model on self-generated samples filtered with physics-aware metrics. To be flexibly support different backbone architectures, BeamVQ leverages a code bank to transform any encoder-decoder model to the continuous state space into discrete codes. Afterwards, it iteratively employs beam search to sample high-quality sequences, retains those with the highest physics-aware scores, and trains model on the new dataset. Comprehensive experiments show that BeamVQ not only gave an average statistical skill score boost for more than 32% for ten backbones on five datasets, but also significantly enhances physics-aware metrics.
- Abstract(参考訳): データ駆動型ディープラーニングは、複雑な物理時空システムをモデル化するための新しいパラダイムとして登場した。
これらのデータ駆動手法は、統計メトリクスを最適化することでパターンを学習し、従来のモデル駆動数値法とは異なり、物理法則の遵守を無視する傾向にある。
したがって、物理的に現実的でない予測をしばしば生成する。
一方、データ駆動モデルから大量の高品質な予測をサンプリングすることで、いくつかの予測は他の予測よりも物理的に妥当になり、将来何が起こるかに近いものになるだろう。
本研究では,ベクトル量子化によるemph{Beam search by Vector Quantization} (BeamVQ)を提案する。
BeamVQの鍵は、物理を意識したメトリクスでフィルタリングされた自己生成サンプルのモデルをトレーニングすることだ。
異なるバックボーンアーキテクチャを柔軟にサポートするために、BeamVQはコードバンクを活用してエンコーダ・デコーダモデルを連続状態空間に変換する。
その後、ビームサーチを用いて高品質なシークエンスをサンプリングし、高い物理認識スコアを持つシークエンスを保持し、新しいデータセットをトレーニングする。
総合的な実験によると、BeamVQは5つのデータセット上の10のバックボーンに対して平均的な統計的スキルスコアを32%以上向上させただけでなく、物理学を意識したメトリクスを大幅に強化した。
関連論文リスト
- Physics-Inspired Deep Learning and Transferable Models for Bridge Scour Prediction [2.451326684641447]
深層学習を用いたせん断予測を橋渡しするために,せん断物理に触発されたニューラルネットワーク(SPINN)を導入する。
SPINNは物理に基づく経験的方程式をディープニューラルネットワークに統合し、サイト固有の履歴監視データを使用してトレーニングする。
性能の変動にもかかわらず、SPINNは、ほとんどのケースで純粋なデータ駆動モデルよりも優れていた。
論文 参考訳(メタデータ) (2024-07-01T13:08:09Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - DynaBench: A benchmark dataset for learning dynamical systems from
low-resolution data [3.8695554579762814]
スパースデータから動的システムを直接学習するための新しいシミュレーションベンチマークデータセットDynaBenchを導入する。
このデータセットは、低解像度で非構造的な測定から力学系の進化を予測することに焦点を当てている。
論文 参考訳(メタデータ) (2023-06-09T10:42:32Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
最先端のディープラーニング技術を用いて3次元乱流をモデル化するために,データ駆動方式を用いる。
モデルの精度は、統計および物理に基づくメトリクスを用いて評価される。
論文 参考訳(メタデータ) (2021-12-07T03:33:39Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Learning physically consistent mathematical models from data using group
sparsity [2.580765958706854]
生物学、高騒音レベル、センサーによる相関、強いシステム間変動といった分野では、データ駆動モデルは非感覚的または物理的に矛盾する。
データ駆動モデリングにおいて$textitpriors$を強制する利点を示すシステム生物学のいくつかの応用例を示す。
論文 参考訳(メタデータ) (2020-12-11T14:45:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。