論文の概要: Graph Neural Networks on Quantum Computers
- arxiv url: http://arxiv.org/abs/2405.17060v1
- Date: Mon, 27 May 2024 11:31:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 15:42:27.342654
- Title: Graph Neural Networks on Quantum Computers
- Title(参考訳): 量子コンピュータ上のグラフニューラルネットワーク
- Authors: Yidong Liao, Xiao-Ming Zhang, Chris Ferrie,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフとして表される構造化データを分析するための強力な機械学習モデルである。
本稿では,量子コンピュータ上でGNNを実装するためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.8784640343151184
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Neural Networks (GNNs) are powerful machine learning models that excel at analyzing structured data represented as graphs, demonstrating remarkable performance in applications like social network analysis and recommendation systems. However, classical GNNs face scalability challenges when dealing with large-scale graphs. This paper proposes frameworks for implementing GNNs on quantum computers to potentially address the challenges. We devise quantum algorithms corresponding to the three fundamental types of classical GNNs: Graph Convolutional Networks, Graph Attention Networks, and Message-Passing GNNs. A complexity analysis of our quantum implementation of the Simplified Graph Convolutional (SGC) Network shows potential quantum advantages over its classical counterpart, with significant improvements in time and space complexities. Our complexities can have trade-offs between the two: when optimizing for minimal circuit depth, our quantum SGC achieves logarithmic time complexity in the input sizes (albeit at the cost of linear space complexity). When optimizing for minimal qubit usage, the quantum SGC exhibits space complexity logarithmic in the input sizes, offering an exponential reduction compared to classical SGCs, while still maintaining better time complexity. These results suggest our Quantum GNN frameworks could efficiently process large-scale graphs. This work paves the way for implementing more advanced Graph Neural Network models on quantum computers, opening new possibilities in quantum machine learning for analyzing graph-structured data.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフとして表される構造化データの解析に優れ、ソーシャルネットワーク分析やレコメンデーションシステムなどのアプリケーションで顕著なパフォーマンスを示す強力な機械学習モデルである。
しかし、古典的なGNNは大規模グラフを扱う際にスケーラビリティの問題に直面している。
本稿では,量子コンピュータ上でGNNを実装するためのフレームワークを提案する。
我々は,従来のGNNの基本型であるグラフ畳み込みネットワーク,グラフ注意ネットワーク,メッセージパッシングGNNの3つに対応する量子アルゴリズムを考案した。
SGC(Simplified Graph Convolutional)ネットワークの量子実装の複雑性解析は、時間と空間の複雑さを大幅に改善した古典的手法に比べて、潜在的な量子優位性を示している。
最小回路深さを最適化する場合、量子SGCは入力サイズの対数時間複雑性を達成する(ただし線形空間の複雑さのコストはかかる)。
最小量子ビットの使用を最適化する場合、量子SGCは入力サイズにおける空間複雑性の対数性を示し、古典的なSGCと比較して指数関数的に減少する。
これらの結果は、我々のQuantum GNNフレームワークが大規模グラフを効率的に処理できることを示唆している。
この研究は、量子コンピュータ上でより高度なグラフニューラルネットワークモデルを実装するための道を開き、グラフ構造化データを解析するための量子機械学習の新たな可能性を開く。
関連論文リスト
- From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks [56.51893966016221]
量子グラフニューラルネットワーク(QGNN)は、量子コンピューティングとグラフニューラルネットワーク(GNN)の新たな融合を表す。
本稿では,QGNNの現状を批判的にレビューし,様々なアーキテクチャを探求する。
我々は、高エネルギー物理学、分子化学、ファイナンス、地球科学など多種多様な分野にまたがる応用について論じ、量子的優位性の可能性を強調した。
論文 参考訳(メタデータ) (2024-08-12T22:53:14Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
比スペクトルグラフネットワーク(S$2$GNN)を提案する。
S$2$GNNは空間的およびスペクトル的にパラメータ化されたグラフフィルタを組み合わせる。
S$2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
論文 参考訳(メタデータ) (2024-05-29T14:28:08Z) - Learnability of a hybrid quantum-classical neural network for graph-structured quantum data [0.0]
グラフ構造化量子データを用いた深層学習(Res-HQCNN)を用いたハイブリッド量子古典ニューラルネットワークを構築した。
量子データにおけるグラフ構造に関する情報の利用により,最先端モデルと比較して学習効率が向上することを示す。
論文 参考訳(メタデータ) (2024-01-28T14:06:06Z) - Enabling Accelerators for Graph Computing [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学ぶための新しいパラダイムを提供する。
GNNは従来のニューラルネットワークと比較して新しい計算課題を提示している。
この論文は、GNNが基盤となるハードウェアとどのように相互作用するかをよりよく理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-16T23:31:20Z) - A Comparison Between Invariant and Equivariant Classical and Quantum Graph Neural Networks [3.350407101925898]
グラフニューラルネットワーク(GNN)のような深層幾何学的手法は、高エネルギー物理学における様々なデータ解析タスクに活用されている。
典型的なタスクはジェットタグであり、ジェットは異なる特徴とそれらの構成粒子間のエッジ接続を持つ点雲と見なされる。
本稿では,古典的グラフニューラルネットワーク(GNN)と,その量子回路との公平かつ包括的な比較を行う。
論文 参考訳(メタデータ) (2023-11-30T16:19:13Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Extending Graph Transformers with Quantum Computed Aggregation [0.0]
本稿では,量子系の長距離相関を用いて集約重みを計算するGNNアーキテクチャを提案する。
これらの相関は、グラフトポロジーを量子コンピュータ内の量子ビットの集合の相互作用に変換することによって生成される。
論文 参考訳(メタデータ) (2022-10-19T14:56:15Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
論文 参考訳(メタデータ) (2020-12-20T04:20:38Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。