Injecting Hamiltonian Architectural Bias into Deep Graph Networks for Long-Range Propagation
- URL: http://arxiv.org/abs/2405.17163v1
- Date: Mon, 27 May 2024 13:36:50 GMT
- Title: Injecting Hamiltonian Architectural Bias into Deep Graph Networks for Long-Range Propagation
- Authors: Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, Davide Bacciu,
- Abstract summary: dynamics of information diffusion within graphs is a critical open issue that heavily influences graph representation learning.
Motivated by this, we introduce (port-)Hamiltonian Deep Graph Networks.
We reconcile under a single theoretical and practical framework both non-dissipative long-range propagation and non-conservative behaviors.
- Score: 55.227976642410766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dynamics of information diffusion within graphs is a critical open issue that heavily influences graph representation learning, especially when considering long-range propagation. This calls for principled approaches that control and regulate the degree of propagation and dissipation of information throughout the neural flow. Motivated by this, we introduce (port-)Hamiltonian Deep Graph Networks, a novel framework that models neural information flow in graphs by building on the laws of conservation of Hamiltonian dynamical systems. We reconcile under a single theoretical and practical framework both non-dissipative long-range propagation and non-conservative behaviors, introducing tools from mechanical systems to gauge the equilibrium between the two components. Our approach can be applied to general message-passing architectures, and it provides theoretical guarantees on information conservation in time. Empirical results prove the effectiveness of our port-Hamiltonian scheme in pushing simple graph convolutional architectures to state-of-the-art performance in long-range benchmarks.
Related papers
- Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks (DGNs) have emerged as a family of deep learning models that can process and learn structured information.
This thesis investigates the dynamics of information propagation within DGNs for static and dynamic graphs, focusing on their design as dynamical systems.
arXiv Detail & Related papers (2024-10-14T12:55:51Z) - Learning Coarse-Grained Dynamics on Graph [4.692217705215042]
We consider a Graph Neural Network (GNN) non-Markovian modeling framework to identify coarse-grained dynamical systems on graphs.
Our main idea is to systematically determine the GNN architecture by inspecting how the leading term of the Mori-Zwanzig memory term depends on the coarse-grained interaction coefficients that encode the graph topology.
arXiv Detail & Related papers (2024-05-15T13:25:34Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Graph Pooling with Maximum-Weight $k$-Independent Sets [12.251091325930837]
We introduce a graph coarsening mechanism based on the graph-theoretic concept of maximum-weight $k$-independent sets.
We prove theoretical guarantees for distortion bounds on path lengths, as well as the ability to preserve key topological properties in the coarsened graphs.
arXiv Detail & Related papers (2022-08-06T14:12:47Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.