A Novel Fusion Architecture for PD Detection Using Semi-Supervised Speech Embeddings
- URL: http://arxiv.org/abs/2405.17206v2
- Date: Mon, 18 Nov 2024 20:43:37 GMT
- Title: A Novel Fusion Architecture for PD Detection Using Semi-Supervised Speech Embeddings
- Authors: Tariq Adnan, Abdelrahman Abdelkader, Zipei Liu, Ekram Hossain, Sooyong Park, MD Saiful Islam, Ehsan Hoque,
- Abstract summary: We present a framework to recognize Parkinson's disease (PD) through an English pangram utterance speech collected using a web application.
Our dataset includes a global cohort of 1306 participants, including 392 diagnosed with PD.
We used deep learning embeddings derived from semi-supervised models such as Wav2Vec 2.0, WavLM, and ImageBind representing the speech dynamics associated with PD.
- Score: 8.996456485141069
- License:
- Abstract: We present a framework to recognize Parkinson's disease (PD) through an English pangram utterance speech collected using a web application from diverse recording settings and environments, including participants' homes. Our dataset includes a global cohort of 1306 participants, including 392 diagnosed with PD. Leveraging the diversity of the dataset, spanning various demographic properties (such as age, sex, and ethnicity), we used deep learning embeddings derived from semi-supervised models such as Wav2Vec 2.0, WavLM, and ImageBind representing the speech dynamics associated with PD. Our novel fusion model for PD classification, which aligns different speech embeddings into a cohesive feature space, demonstrated superior performance over standard concatenation-based fusion models and other baselines (including models built on traditional acoustic features). In a randomized data split configuration, the model achieved an Area Under the Receiver Operating Characteristic Curve (AUROC) of 88.94% and an accuracy of 85.65%. Rigorous statistical analysis confirmed that our model performs equitably across various demographic subgroups in terms of sex, ethnicity, and age, and remains robust regardless of disease duration. Furthermore, our model, when tested on two entirely unseen test datasets collected from clinical settings and from a PD care center, maintained AUROC scores of 82.12% and 78.44%, respectively. This affirms the model's robustness and it's potential to enhance accessibility and health equity in real-world applications.
Related papers
- Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
This paper outlines an approach in the domain of federated survival analysis, specifically the Cox Proportional Hazards (CoxPH) model.
We present an FL approach that employs feature-based clustering to enhance model accuracy across synthetic datasets and real-world applications.
arXiv Detail & Related papers (2024-07-20T18:34:20Z) - Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma [4.578027879885667]
This research aims to improve glioblastoma survival prediction by integrating MR images, clinical and molecular-pathologic data in a transformer-based deep learning model.
The model employs self-supervised learning techniques to effectively encode the high-dimensional MRI input for integration with non-imaging data using cross-attention.
arXiv Detail & Related papers (2024-05-21T17:44:48Z) - Detecting Speech Abnormalities with a Perceiver-based Sequence
Classifier that Leverages a Universal Speech Model [4.503292461488901]
We propose a Perceiver-based sequence to detect abnormalities in speech reflective of several neurological disorders.
We combine this sequence with a Universal Speech Model (USM) that is trained (unsupervised) on 12 million hours of diverse audio recordings.
Our model outperforms standard transformer (80.9%) and perceiver (81.8%) models and achieves an average accuracy of 83.1%.
arXiv Detail & Related papers (2023-10-16T21:07:12Z) - Role of Image Acquisition and Patient Phenotype Variations in Automatic
Segmentation Model Generalization [0.0]
This study evaluated the out-of-domain performance and generalization capabilities of automated medical image segmentation models.
Dataset was from non-contrast and contrast-enhanced abdominal CT scans of healthy patients and those with polycystic kidney disease (PKD)
Models trained on a diverse range of data showed no worse performance than models trained exclusively on in-domain data.
arXiv Detail & Related papers (2023-07-26T20:15:19Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
This study included subjects (1832 subjects, 3276 knees) from the baseline of the MOST study.
PF joint regions-of-interest were identified using an automated landmark detection tool (BoneFinder) on lateral knee X-rays.
Risk factors included age, sex, BMI and WOMAC score, and the radiographic osteoarthritis stage of the tibiofemoral joint (KL score)
arXiv Detail & Related papers (2023-05-10T06:43:33Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.