Efficient Orchestrated AI Workflows Execution on Scale-out Spatial Architecture
- URL: http://arxiv.org/abs/2405.17221v1
- Date: Tue, 21 May 2024 14:09:31 GMT
- Title: Efficient Orchestrated AI Workflows Execution on Scale-out Spatial Architecture
- Authors: Jinyi Deng, Xinru Tang, Zhiheng Yue, Guangyang Lu, Qize Yang, Jiahao Zhang, Jinxi Li, Chao Li, Shaojun Wei, Yang Hu, Shouyi Yin,
- Abstract summary: We present "Orchestrated AIs," an approach that integrates various tasks with logic-driven decisions into dynamic, sophisticated AIs.
We find that the intrinsic Dual Dynamicity of Orchestrated AIs can be effectively represented using the Orchestrated spatial Graph.
Our evaluations demonstrate that significantly outperforms traditional architectures in handling the dynamic demands of Orchestrated AIs.
- Score: 17.516934379812994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the increasing complexity of AI applications, traditional spatial architectures frequently fall short. Our analysis identifies a pattern of interconnected, multi-faceted tasks encompassing both AI and general computational processes. In response, we have conceptualized "Orchestrated AI Workflows," an approach that integrates various tasks with logic-driven decisions into dynamic, sophisticated workflows. Specifically, we find that the intrinsic Dual Dynamicity of Orchestrated AI Workflows, namely dynamic execution times and frequencies of Task Blocks, can be effectively represented using the Orchestrated Workflow Graph. Furthermore, the intrinsic Dual Dynamicity poses challenges to existing spatial architecture, namely Indiscriminate Resource Allocation, Reactive Load Rebalancing, and Contagious PEA Idleness. To overcome these challenges, we present Octopus, a scale-out spatial architecture and a suite of advanced scheduling strategies optimized for executing Orchestrated AI Workflows, such as the Discriminate Dual-Scheduling Mechanism, Adaptive TBU Scheduling Strategy, and Proactive Cluster Scheduling Strategy. Our evaluations demonstrate that Octopus significantly outperforms traditional architectures in handling the dynamic demands of Orchestrated AI Workflows, and possesses robust scalability in large scale hardware such as wafer-scale chip.
Related papers
- Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Faster Diffusion Action Segmentation [9.868244939496678]
Temporal Action Classification (TAS) is an essential task in video analysis, aiming to segment and classify continuous frames into distinct action segments.
Recent advances in diffusion models have demonstrated substantial success in TAS tasks due to their stable training process and high-quality generation capabilities.
We propose EffiDiffAct, an efficient and high-performance TAS algorithm.
arXiv Detail & Related papers (2024-08-04T13:23:18Z) - Synergising Human-like Responses and Machine Intelligence for Planning in Disaster Response [10.294618771570985]
We propose an attention-based cognitive architecture inspired by Dual Process Theory (DPT)
This framework integrates, in an online fashion, rapid yet (human-like) responses with the slow but optimized planning capabilities of machine intelligence.
arXiv Detail & Related papers (2024-04-15T15:47:08Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
In this paper, we propose a reinforcement learning approach to solve a realistic scheduling problem.
We apply it to an algorithm commonly executed in the high performance computing community, the Cholesky factorization.
Our algorithm uses graph neural networks in combination with an actor-critic algorithm (A2C) to build an adaptive representation of the problem on the fly.
arXiv Detail & Related papers (2020-11-09T10:57:21Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.