DPN: Decoupling Partition and Navigation for Neural Solvers of Min-max Vehicle Routing Problems
- URL: http://arxiv.org/abs/2405.17272v2
- Date: Thu, 6 Jun 2024 10:30:24 GMT
- Title: DPN: Decoupling Partition and Navigation for Neural Solvers of Min-max Vehicle Routing Problems
- Authors: Zhi Zheng, Shunyu Yao, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, Ke Tang,
- Abstract summary: We present a novel attention-based Partition-and-Navigation encoder (P&N) that learns distinct embeddings for partition and navigation.
We develop an effective agent-permutation-symmetric (APS) loss function.
- Score: 26.48767051423456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The min-max vehicle routing problem (min-max VRP) traverses all given customers by assigning several routes and aims to minimize the length of the longest route. Recently, reinforcement learning (RL)-based sequential planning methods have exhibited advantages in solving efficiency and optimality. However, these methods fail to exploit the problem-specific properties in learning representations, resulting in less effective features for decoding optimal routes. This paper considers the sequential planning process of min-max VRPs as two coupled optimization tasks: customer partition for different routes and customer navigation in each route (i.e., partition and navigation). To effectively process min-max VRP instances, we present a novel attention-based Partition-and-Navigation encoder (P&N Encoder) that learns distinct embeddings for partition and navigation. Furthermore, we utilize an inherent symmetry in decoding routes and develop an effective agent-permutation-symmetric (APS) loss function. Experimental results demonstrate that the proposed Decoupling-Partition-Navigation (DPN) method significantly surpasses existing learning-based methods in both single-depot and multi-depot min-max VRPs. Our code is available at
Related papers
- Navigation Variable-based Multi-objective Particle Swarm Optimization for UAV Path Planning with Kinematic Constraints [0.8192907805418583]
Path planning is essential for unmanned aerial vehicles (UAVs) as it determines the path that the UAV needs to follow to complete a task.
This work introduces a new algorithm called navigation variable-based multi-objective particle swarm optimization (NMOPSO)
The algorithm features a new path representation based on navigation variables to include kinematic constraints and exploit the maneuverable characteristics of the UAV.
arXiv Detail & Related papers (2025-01-03T16:07:37Z) - SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
A novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments.
To this end, insights from a digital twin with real-world wireless ray tracing data are explored.
Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths.
arXiv Detail & Related papers (2024-11-27T10:45:49Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
We introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics.
First, we propose direction-aware facilitating attention model (DaAM) to incorporate directionality into the embedding process.
Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy.
arXiv Detail & Related papers (2024-03-11T02:17:42Z) - Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems [20.684353068460375]
When vehicle routing decisions are intertwined with higher-level decisions, the resulting optimization problems pose significant challenges for computation.
We propose a novel deep-learning-based approach called Genetic Algorithm with Neural Cost Predictor (GANCP) to tackle the challenge.
In particular, our proposed neural network learns the objective values of the HGS-CVRP open-source package that solves capacitated vehicle routing problems.
arXiv Detail & Related papers (2023-10-22T02:46:37Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Towards Omni-generalizable Neural Methods for Vehicle Routing Problems [14.210085924625705]
This paper studies a challenging yet realistic setting, which considers generalization across both size and distribution in VRPs.
We propose a generic meta-learning framework, which enables effective training of an model with the capability of fast adaptation to new tasks during inference.
arXiv Detail & Related papers (2023-05-31T06:14:34Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning.
We develop an efficient approximated gradient descent method based on recent practical envelope smoothing technique.
Our proposed algorithm can also be used to minimize the sum of some ranked range loss, which also lacks efficient solvers.
arXiv Detail & Related papers (2022-03-03T03:46:18Z) - Waypoint Planning Networks [66.72790309889432]
We propose a hybrid algorithm based on LSTMs with a local kernel - a classic algorithm such as A*, and a global kernel using a learned algorithm.
We compare WPN against A*, as well as related works including motion planning networks (MPNet) and value networks (VIN)
It is shown that WPN's search space is considerably less than A*, while being able to generate near optimal results.
arXiv Detail & Related papers (2021-05-01T18:02:01Z) - Integrated Decision and Control: Towards Interpretable and Efficient
Driving Intelligence [13.589285628074542]
We present an interpretable and efficient decision and control framework for automated vehicles.
It decomposes the driving task into multi-path planning and optimal tracking that are structured hierarchically.
Results show that our method has better online computing efficiency and driving performance including traffic efficiency and safety.
arXiv Detail & Related papers (2021-03-18T14:43:31Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability.
Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology.
Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions.
arXiv Detail & Related papers (2020-03-23T12:58:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.