論文の概要: Novel Approaches for ML-Assisted Particle Track Reconstruction and Hit Clustering
- arxiv url: http://arxiv.org/abs/2405.17325v1
- Date: Mon, 27 May 2024 16:23:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 14:33:59.917147
- Title: Novel Approaches for ML-Assisted Particle Track Reconstruction and Hit Clustering
- Title(参考訳): ML支援粒子軌道再構成とヒットクラスタリングの新しいアプローチ
- Authors: Uraz Odyurt, Nadezhda Dobreva, Zef Wolffs, Yue Zhao, Antonio Ferrer Sánchez, Roberto Ruiz de Austri Bazan, José D. Martín-Guerrero, Ana-Lucia Varbanescu, Sascha Caron,
- Abstract要約: 軌道再構成は高エネルギー物理学(HEP)の重要な側面であり、主要な実験において重要な役割を果たしている。
我々は、簡易なシミュレータ(REDVID)を使用して、簡易性のために特別に構成されたトレーニングデータを生成する。
我々は、ヒットシーケンスをヒットシーケンスとして扱い、シーケンス変換問題をトラックする。
- 参考スコア(独自算出の注目度): 2.7999949281820276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Track reconstruction is a vital aspect of High-Energy Physics (HEP) and plays a critical role in major experiments. In this study, we delve into unexplored avenues for particle track reconstruction and hit clustering. Firstly, we enhance the algorithmic design effort by utilising a simplified simulator (REDVID) to generate training data that is specifically composed for simplicity. We demonstrate the effectiveness of this data in guiding the development of optimal network architectures. Additionally, we investigate the application of image segmentation networks for this task, exploring their potential for accurate track reconstruction. Moreover, we approach the task from a different perspective by treating it as a hit sequence to track sequence translation problem. Specifically, we explore the utilisation of Transformer architectures for tracking purposes. Our preliminary findings are covered in detail. By considering this novel approach, we aim to uncover new insights and potential advancements in track reconstruction. This research sheds light on previously unexplored methods and provides valuable insights for the field of particle track reconstruction and hit clustering in HEP.
- Abstract(参考訳): 軌道再構成は高エネルギー物理学(HEP)の重要な側面であり、主要な実験において重要な役割を果たしている。
本研究では,粒子軌道再構成と衝突クラスタリングのための未探索経路を探索する。
まず,単純化されたシミュレータ(REDVID)を用いて,簡易に構成されたトレーニングデータを生成することにより,アルゴリズム設計の取り組みを強化する。
我々は、最適なネットワークアーキテクチャの開発を導く上で、このデータの有効性を実証する。
さらに,この課題に対する画像分割ネットワークの適用について検討し,正確なトラック再構築の可能性を探る。
さらに、ヒットシーケンスとして扱うことで、異なる視点からタスクにアプローチし、シーケンス翻訳問題を追跡する。
具体的には、追跡のためのTransformerアーキテクチャの利用について検討する。
予備的な発見は詳しく述べられている。
この新たなアプローチを考慮し,軌道再建における新たな洞察と潜在的な進歩を明らかにすることを目的とする。
本研究は、未調査の手法に光を当て、HEPにおける粒子トラックの再構築とヒットクラスタリングの分野における貴重な知見を提供する。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Reconstruction of Particle Flow Energy Distribution Using Deep Learning Algorithms [8.5980103509356]
近年の進歩は、エネルギーマップ再構築のための様々なサブ検出器からの熱量計画像の深層学習による処理である。
本稿では,従来のアルゴリズム-MLP,CNN,U-Net,RNN-を,自己注意と3D畳み込みモジュールを含む変種と比較する。
ジェットイベントのテストデータセットを使用して、異常な高エネルギーイベントを扱う際のモデルの性能を分析し、比較する。
論文 参考訳(メタデータ) (2024-10-08T11:49:18Z) - TrackFormers: In Search of Transformer-Based Particle Tracking for the High-Luminosity LHC Era [2.9052912091435923]
高エネルギー物理実験は、新しいイテレーション毎に複数倍のデータの増加に直面している。
このようなオーバーホールが必要なステップの1つは、粒子トラックの再構築、すなわち追跡のタスクである。
機械学習支援ソリューションは、大幅な改善が期待されている。
論文 参考訳(メタデータ) (2024-07-09T18:47:25Z) - Simultaneous Map and Object Reconstruction [66.66729715211642]
本稿では,LiDARから大規模都市景観を動的に再現する手法を提案する。
我々は、最近の新しいビュー合成法から着想を得て、大域的な最適化として再構築問題を提起する。
連続動作の慎重なモデリングにより, 回転するLiDARセンサの回転シャッター効果を補うことができる。
論文 参考訳(メタデータ) (2024-06-19T23:53:31Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
本研究の目的は,AIGA-IACTに設定された課題を解決するための機械学習アプリケーションの可能性を検討することである。
The method of Convolutional Neural Networks (CNN) was applied to process and analysis Monte-Carlo eventssimulated with CORSIKA。
論文 参考訳(メタデータ) (2021-12-19T15:17:20Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
画像再構成に有効な先行画像として, 奥行き画像が導入された。
その印象的な再建性にもかかわらず、学習技術や伝統的な再建技術と比べてアプローチは遅い。
計算課題に対処する2段階の学習パラダイムを開発する。
論文 参考訳(メタデータ) (2021-11-23T15:08:26Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
スパースビューからの光場再構成のための新しい畳み込みニューラルネットワーク(CNN)ベースのフレームワークを開発した。
最先端のアルゴリズムと比較して,提案フレームワークの高性能と堅牢性を実証する。
論文 参考訳(メタデータ) (2021-03-24T08:16:32Z) - Scalable, End-to-End, Deep-Learning-Based Data Reconstruction Chain for
Particle Imaging Detectors [0.0]
本稿では,Lyquid Time Projection Chambers (LArTPCs) のためのエンドツーエンドのMLベースのデータ再構成チェーンを提案する。
これは、何十もの高エネルギーニュートリノ相互作用の既往の積み重ねを扱う最初の実装である。
論文 参考訳(メタデータ) (2021-02-01T18:10:00Z) - Deep Non-Line-of-Sight Reconstruction [18.38481917675749]
本稿では,再構成問題を効率的に解くために,畳み込みフィードフォワードネットワークを用いる。
本研究では,自動エンコーダアーキテクチャを設計し,一貫した画像を直接深度マップ表現にマッピングする。
筆者らのフィードフォワードネットワークは,合成データのみに基づいて訓練されているものの,SPADセンサの計測データに一般化し,モデルに基づく再構成手法と競合する結果が得られることを示した。
論文 参考訳(メタデータ) (2020-01-24T16:05:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。