論文の概要: TrackFormers: In Search of Transformer-Based Particle Tracking for the High-Luminosity LHC Era
- arxiv url: http://arxiv.org/abs/2407.07179v1
- Date: Tue, 9 Jul 2024 18:47:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:41:00.430840
- Title: TrackFormers: In Search of Transformer-Based Particle Tracking for the High-Luminosity LHC Era
- Title(参考訳): トラックフォーマー:高輝度LHC時代の変圧器を用いた粒子追跡の探索
- Authors: Sascha Caron, Nadezhda Dobreva, Antonio Ferrer Sánchez, José D. Martín-Guerrero, Uraz Odyurt, Roberto Ruiz de Austri Bazan, Zef Wolffs, Yue Zhao,
- Abstract要約: 高エネルギー物理実験は、新しいイテレーション毎に複数倍のデータの増加に直面している。
このようなオーバーホールが必要なステップの1つは、粒子トラックの再構築、すなわち追跡のタスクである。
機械学習支援ソリューションは、大幅な改善が期待されている。
- 参考スコア(独自算出の注目度): 2.9052912091435923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-Energy Physics experiments are facing a multi-fold data increase with every new iteration. This is certainly the case for the upcoming High-Luminosity LHC upgrade. Such increased data processing requirements forces revisions to almost every step of the data processing pipeline. One such step in need of an overhaul is the task of particle track reconstruction, a.k.a., tracking. A Machine Learning-assisted solution is expected to provide significant improvements, since the most time-consuming step in tracking is the assignment of hits to particles or track candidates. This is the topic of this paper. We take inspiration from large language models. As such, we consider two approaches: the prediction of the next word in a sentence (next hit point in a track), as well as the one-shot prediction of all hits within an event. In an extensive design effort, we have experimented with three models based on the Transformer architecture and one model based on the U-Net architecture, performing track association predictions for collision event hit points. In our evaluation, we consider a spectrum of simple to complex representations of the problem, eliminating designs with lower metrics early on. We report extensive results, covering both prediction accuracy (score) and computational performance. We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments. The results highlight distinct advantages among different designs in terms of prediction accuracy and computational performance, demonstrating the efficiency of our methodology. Most importantly, the results show the viability of a one-shot encoder-classifier based Transformer solution as a practical approach for the task of tracking.
- Abstract(参考訳): 高エネルギー物理実験は、新しいイテレーション毎に複数倍のデータの増加に直面している。
これは間違いなく、次のHigh-Luminosity LHCアップグレードのケースだ。
このようなデータ処理要求の増加は、データ処理パイプラインのほぼすべてのステップにリビジョンを強制する。
このようなオーバーホールが必要なステップの1つは、粒子トラックの再構築、すなわち追跡のタスクである。
トラッキングにおける最も時間を要するステップは、粒子へのヒットの割り当てや、候補の追跡である。
これはこの論文の話題です。
私たちは大きな言語モデルからインスピレーションを受けます。
このように、文中の次の単語(トラック内の次のヒットポイント)の予測と、イベント内のすべてのヒットのワンショット予測の2つのアプローチを考える。
本研究では,Transformerアーキテクチャに基づく3つのモデルと,U-Netアーキテクチャに基づく1つのモデルを用いて,衝突事象のヒット点のトラックアソシエーション予測を行った。
評価では,問題の単純から複雑な表現のスペクトルを考察し,早期に低い指標を持つ設計を排除した。
予測精度(スコア)と計算性能の両方を網羅した広範な結果を報告する。
我々は、REDVIDシミュレーションフレームワークとTrackMLデータセットに適用した削減を利用して、5つのデータセットを単純なものから複雑なものへと構成し、実験を行った。
その結果、予測精度と計算性能の点で異なる設計の異なる利点を強調し、方法論の効率性を実証した。
最も重要なことは、追跡タスクの実践的なアプローチとして、ワンショットエンコーダ分類器ベースのTransformerソリューションが実現可能であることを示すことである。
関連論文リスト
- Robust Visual Tracking via Iterative Gradient Descent and Threshold Selection [4.978166837959101]
本稿では, 誤差ベクトルがガウス-ラプラシアン分布に従えば, 良好な性能が得られる新しい線形回帰推定器を提案する。
さらに、IGDTSを生成トラッカーに拡張し、IGDTS距離を適用してサンプルとモデル間のずれを測定する。
いくつかの難解な画像列の実験結果から,提案したトラッカーは既存のトラッカーより優れていた。
論文 参考訳(メタデータ) (2024-06-02T01:51:09Z) - FT2Ra: A Fine-Tuning-Inspired Approach to Retrieval-Augmented Code Completion [24.964973946366335]
我々は,真の微調整を模倣することを目的とした新しい検索手法FT2Raを開発した。
FT2RaはUniXcoderの最良のベースライン方式に比べて精度が4.29%向上している。
論文 参考訳(メタデータ) (2024-04-02T01:42:15Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
記述的なテキストクエリーを与えられたテキストベースの人物検索は、画像ギャラリーからベストマッチした人物を検索することを目的としている。
このようなクロスモーダル検索タスクは、重要なモダリティギャップ、きめ細かい相違、注釈付きデータの不十分さのため、かなり難しい。
本稿では,テキストに基づく人物検索のための2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:26:49Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQは、マルチタスク学習問題とエンティティペアの分布を回避する、シーングラフ生成の新しい定式化である。
我々は,DETRをベースとしたエンコーダ-デコーダ条件付きクエリを用いて,エンティティラベル空間を大幅に削減する。
実験結果から、TraCQは既存のシングルステージシーングラフ生成法よりも優れており、Visual Genomeデータセットの最先端の2段階メソッドを多く上回っていることがわかった。
論文 参考訳(メタデータ) (2023-06-09T06:02:01Z) - Transforming Model Prediction for Tracking [109.08417327309937]
トランスフォーマーは、誘導バイアスの少ないグローバルな関係を捉え、より強力なターゲットモデルの予測を学ぶことができる。
提案したトラッカーをエンドツーエンドにトレーニングし、複数のトラッカーデータセットに関する総合的な実験を行うことで、その性能を検証する。
我々のトラッカーは3つのベンチマークで新しい技術状態を設定し、挑戦的なLaSOTデータセットで68.5%のAUCを達成した。
論文 参考訳(メタデータ) (2022-03-21T17:59:40Z) - MTP: Multi-Hypothesis Tracking and Prediction for Reduced Error
Propagation [39.41917241231786]
本稿では,トラッキングモジュールと予測モジュールの結合に着目し,カスケードエラーの問題に対処する。
最先端の追跡・予測ツールを用いて,追跡による誤差が予測性能に与える影響を総合的に評価した。
このフレームワークは、nuScenesデータセット上で標準の単一仮説追跡予測パイプラインを最大34.2%改善する。
論文 参考訳(メタデータ) (2021-10-18T17:30:59Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
正確で、堅牢で、効率的で、一般化可能で、エンドツーエンドのトレーニングが可能なモデルを提案する。
精度を向上させるために,2つの軽量モジュールを提案する。
DQInitは、インプットからデコーダのクエリを動的に初期化し、複数のデコーダ層を持つものと同じ精度でモデルを実現する。
QAMemは、共有するクエリではなく、それぞれのクエリに別々のメモリ値を割り当てることで、低解像度のフィーチャーマップ上のクエリの識別能力を高めるように設計されている。
論文 参考訳(メタデータ) (2021-05-27T13:51:42Z) - Exploring Opportunistic Meta-knowledge to Reduce Search Spaces for
Automated Machine Learning [8.325359814939517]
本稿では,従来の経験から,パイプライン合成/最適化プロセスを開始する前に,利用可能な分類器/回帰器のプールを事前に計算できるかどうかを検討する。
論文 参考訳(メタデータ) (2021-05-01T15:25:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。