Optimizing topology for quantum probing with discrete-time quantum walks
- URL: http://arxiv.org/abs/2405.17354v1
- Date: Mon, 27 May 2024 16:57:27 GMT
- Title: Optimizing topology for quantum probing with discrete-time quantum walks
- Authors: Simone Cavazzoni, Paolo Bordone, Matteo G. A. Paris,
- Abstract summary: We explore the use of DTQWs as quantum probes in scenarios where the parameter of interest is encoded in the internal degree of freedom of the walker.
In particular, we start considering the encoding of the parameter by rotations for a walker on the line, and evaluate the quantum Fisher information (QFI) and the position Fisher information (FI)
This allows us to understand the role of interference in the position space and to introduce an optimal topology, which maximizes the QFI of the coin parameter and makes the position FI equal to the QFI.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete-time quantum walk (DTQW) represents a convenient mathematical framework for describing the motion of a particle on a discrete set of positions when this motion is conditioned by the values of certain internal degrees of freedom, which are usually referred to as the {\em coin} of the particle. As such, and owing to the inherent dependence of the position distribution on the coin degrees of freedom, DTQWs naturally emerge as promising candidates for quantum metrology. In this paper, we explore the use of DTQWs as quantum probes in scenarios where the parameter of interest is encoded in the internal degree of freedom of the walker, and investigate the role of the topology of the walker's space on the attainable precision. In particular, we start considering the encoding of the parameter by rotations for a walker on the line, and evaluate the quantum Fisher information (QFI) and the position Fisher information (FI), explicitly determining the optimal initial state in position space that maximizes the QFI across all encoding schemes. This allows us to understand the role of interference in the position space and to introduce an optimal topology, which maximizes the QFI of the coin parameter and makes the position FI equal to the QFI.
Related papers
- Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.
We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.
We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Quantum Sensing with Nanoelectronics: Fisher Information for an Adiabatic Perturbation [0.0]
Quantum systems can offer enhanced precision over their classical counterparts.
Quantum Fisher information (QFI) characterizes the precision of parameter estimation for an ideal measurement.
For quantum dot nanoelectronics devices, we show that electron interactions can lead to exponential scaling of the QFI with system size.
arXiv Detail & Related papers (2024-06-26T18:03:17Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Coin dimensionality as a resource in quantum metrology involving
discrete-time quantum walks [0.0]
We consider problems where the coin parameter governs rotations around a given axis and show that the corresponding quantum Fisher information may increase with the dimension of the coin.
We consider Grover-like encoding of the parameter and compare results with those obtained from rotation encoding.
arXiv Detail & Related papers (2023-10-31T22:20:50Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Probing cosmic string spacetime through parameter estimation [2.2945727928675734]
We estimate the deficit angle parameter by calculating its quantum Fisher information(QFI)
It is found that the quantum Fisher information depends on the deficit angle, evolution time, detector initial state, polarization direction, and its position.
Our results show that for different polarization cases the QFIs have different behaviors and different orders of magnitude, which may shed light on the exploration of cosmic string spacetime.
arXiv Detail & Related papers (2022-08-10T13:55:09Z) - Probing the topological Anderson transition with quantum walks [48.7576911714538]
We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters.
The option to directly monitor the walker's probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition.
arXiv Detail & Related papers (2021-02-01T21:19:15Z) - Variational Quantum Algorithm for Estimating the Quantum Fisher
Information [0.0]
We present a variational quantum algorithm called Variational Quantum Fisher Information Estimation (VQFIE)
By estimating lower and upper bounds on the QFI, based on bounding the fidelity, VQFIE outputs a range in which the actual QFI lies.
This result can then be used to variationally prepare the state that maximizes the QFI, for the application of quantum sensing.
arXiv Detail & Related papers (2020-10-20T17:44:55Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.