Probing cosmic string spacetime through parameter estimation
- URL: http://arxiv.org/abs/2208.05351v1
- Date: Wed, 10 Aug 2022 13:55:09 GMT
- Title: Probing cosmic string spacetime through parameter estimation
- Authors: Ying Yang, Jiliang Jing, and Zehua Tian
- Abstract summary: We estimate the deficit angle parameter by calculating its quantum Fisher information(QFI)
It is found that the quantum Fisher information depends on the deficit angle, evolution time, detector initial state, polarization direction, and its position.
Our results show that for different polarization cases the QFIs have different behaviors and different orders of magnitude, which may shed light on the exploration of cosmic string spacetime.
- Score: 2.2945727928675734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum metrology studies the ultimate precision limit of physical quantities
by using quantum strategy. In this paper we apply the quantum metrology
technologies to the relativistic framework for estimating the deficit angle
parameter of cosmic string spacetime. We use a two-level atom coupled to
electromagnetic fields as the probe and derive its dynamical evolution by
treating it as an open quantum system. We estimate the deficit angle parameter
by calculating its quantum Fisher information(QFI). It is found that the
quantum Fisher information depends on the deficit angle, evolution time,
detector initial state, polarization direction, and its position. We then
identify the optimal estimation strategies, i.e., maximize the quantum Fisher
information via all the associated parameters, and therefore optimize the
precision of estimation. Our results show that for different polarization cases
the QFIs have different behaviors and different orders of magnitude, which may
shed light on the exploration of cosmic string spacetime.
Related papers
- Quantum metrology with a continuous-variable system [0.0]
We discuss precision limits and optimal strategies in quantum metrology and sensing with a single mode of quantum continuous variables.
We summarize some of the main experimental achievements and present emerging platforms for continuous-variable sensing.
arXiv Detail & Related papers (2024-11-06T18:57:07Z) - Quantum Natural Stochastic Pairwise Coordinate Descent [6.187270874122921]
Quantum machine learning through variational quantum algorithms (VQAs) has gained substantial attention in recent years.
This paper introduces the quantum natural pairwise coordinate descent (2QNSCD) optimization method.
We develop a highly sparse unbiased estimator of the novel metric tensor using a quantum circuit with gate complexity $Theta(1)$ times that of the parameterized quantum circuit and single-shot quantum measurements.
arXiv Detail & Related papers (2024-07-18T18:57:29Z) - Random Matrix Theory Approach to Quantum Fisher Information in Quantum
Many-Body Systems [0.0]
We theoretically investigate parameter quantum estimation in quantum chaotic systems.
Our analysis is based on an effective description of non-integrable quantum systems in terms of a random matrix Hamiltonian.
arXiv Detail & Related papers (2024-02-14T09:07:25Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Estimation of the Stokes Vector Rotation for a General Polarimetric Transformation [0.0]
We investigate the precision limits of polarization rotation angle estimation about a known rotation axis in a quantum polarimetric process.
The diattenuator and depolarizer channels, acting on the probe state, can be thought of as effective noise processes.
The effects of the noise channels as well as their ordering is analyzed on the estimation error of the rotation angle to characterize practical and optimal quantum probe states.
arXiv Detail & Related papers (2023-04-17T13:18:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Fisher information as a probe of spacetime structure: Relativistic
quantum metrology in (A)dS [0.0]
We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space.
Using Unruh-DeWitt detectors coupled to a massless scalar field as probes, we compute the Fisher information for estimating temperature.
We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state.
arXiv Detail & Related papers (2020-12-15T19:08:18Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.