Physical Implementability for Reversible Magic State Manipulation
- URL: http://arxiv.org/abs/2405.17356v1
- Date: Mon, 27 May 2024 17:02:16 GMT
- Title: Physical Implementability for Reversible Magic State Manipulation
- Authors: Yu-Ao Chen, Gilad Gour, Xin Wang, Lei Zhang, Chenghong Zhu,
- Abstract summary: This study introduces a reversible framework for the manipulation of magic states in odd dimensions.
We propose the concept of physical implementability for characterizing the hardness and cost of maintaining reversibility.
- Score: 11.182209956500682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magic states are essential for achieving universal quantum computation. This study introduces a reversible framework for the manipulation of magic states in odd dimensions, delineating a necessary and sufficient condition for the exact transformations between magic states under maps that preserve the trace of states and positivity of discrete Wigner representation. Utilizing the stochastic formalism, we demonstrate that magic mana emerges as the unique measure for such reversible magic state transformations. We propose the concept of physical implementability for characterizing the hardness and cost of maintaining reversibility. Our findings show that, analogous to the entanglement theory, going beyond the positivity constraint enables an exact reversible theory of magic manipulation, thereby hinting at a potential incongruity between the reversibility of quantum resources and the fundamental principles of quantum mechanics. Physical implementability for reversible manipulation provides a new perspective for understanding and quantifying quantum resources, contributing to an operational framework for understanding the cost of reversible quantum resource manipulation.
Related papers
- Second Law of Entanglement Manipulation with Entanglement Battery [41.94295877935867]
A central question since the beginning of quantum information science is how two distant parties can convert one entangled state into another.
It has been conjectured that entangled state transformations could be executed reversibly in an regime, mirroring the nature of Carnot cycles in classical thermodynamics.
We investigate the concept of an entanglement battery, an auxiliary quantum system that facilitates quantum state transformations without a net loss of entanglement.
arXiv Detail & Related papers (2024-05-17T07:55:04Z) - Reversible Entanglement Beyond Quantum Operations [9.828466699951377]
We introduce a reversible theory of exact entanglement manipulation by establishing a necessary and sufficient condition for state transfer.
We show that logarithmic negativity emerges as the pivotal entanglement measure for determining entangled states' transformations.
arXiv Detail & Related papers (2023-12-07T17:25:28Z) - Probabilistic Unitary Formulation of Open Quantum System Dynamics [3.8326963933937885]
We show that for any continuously evolving open quantum system, its dynamics can be described by a time-dependent Hamiltonian and probabilistic combinations of up to $d-1$.
The formalism provides a scheme to control a quantum state to evolve along designed quantum trajectories, and can be particularly useful in quantum computing and quantum simulation scenes.
arXiv Detail & Related papers (2023-07-11T20:07:03Z) - Functional analytic insights into irreversibility of quantum resources [8.37609145576126]
Quantum channels which preserve certain sets of states are contractive with respect to the base norms induced by those sets.
We show that there exist qutrit magic states that cannot be reversibly interconverted under stabiliser protocols.
arXiv Detail & Related papers (2022-11-28T19:00:00Z) - Real quantum operations and state transformations [44.99833362998488]
Resource theory of imaginarity provides a useful framework to understand the role of complex numbers.
In the first part of this article, we study the properties of real'' (quantum) operations in single-party and bipartite settings.
In the second part of this article, we focus on the problem of single copy state transformation via real quantum operations.
arXiv Detail & Related papers (2022-10-28T01:08:16Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding [58.720142291102135]
We define a resource measure for magic, the sought-after property in most fault-tolerant quantum computers.
Our formulation is based on bosonic codes, well-studied tools in continuous-variable quantum computation.
arXiv Detail & Related papers (2021-09-27T12:56:01Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.