EASI-Tex: Edge-Aware Mesh Texturing from Single Image
- URL: http://arxiv.org/abs/2405.17393v1
- Date: Mon, 27 May 2024 17:46:22 GMT
- Title: EASI-Tex: Edge-Aware Mesh Texturing from Single Image
- Authors: Sai Raj Kishore Perla, Yizhi Wang, Ali Mahdavi-Amiri, Hao Zhang,
- Abstract summary: We present a novel approach for single-image, which employs a diffusion model with conditioning to seamlessly transfer an object's texture to a given 3D mesh object.
We do not assume that the two objects belong to the same category, and even if they do, can be discrepancies in their proportions and part proportions.
- Score: 12.942796503696194
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel approach for single-image mesh texturing, which employs a diffusion model with judicious conditioning to seamlessly transfer an object's texture from a single RGB image to a given 3D mesh object. We do not assume that the two objects belong to the same category, and even if they do, there can be significant discrepancies in their geometry and part proportions. Our method aims to rectify the discrepancies by conditioning a pre-trained Stable Diffusion generator with edges describing the mesh through ControlNet, and features extracted from the input image using IP-Adapter to generate textures that respect the underlying geometry of the mesh and the input texture without any optimization or training. We also introduce Image Inversion, a novel technique to quickly personalize the diffusion model for a single concept using a single image, for cases where the pre-trained IP-Adapter falls short in capturing all the details from the input image faithfully. Experimental results demonstrate the efficiency and effectiveness of our edge-aware single-image mesh texturing approach, coined EASI-Tex, in preserving the details of the input texture on diverse 3D objects, while respecting their geometry.
Related papers
- Text-guided Controllable Mesh Refinement for Interactive 3D Modeling [48.226234898333]
We propose a novel technique for adding geometric details to an input coarse 3D mesh guided by a text prompt.
First, we generate a single-view RGB image conditioned on the input coarse geometry and the input text prompt.
Second, we use our novel multi-view normal generation architecture to jointly generate six different views of the normal images.
Third, we optimize our mesh with respect to all views and generate a fine, detailed geometry as output.
arXiv Detail & Related papers (2024-06-03T17:59:43Z) - TextureDreamer: Image-guided Texture Synthesis through Geometry-aware
Diffusion [64.49276500129092]
TextureDreamer is an image-guided texture synthesis method.
It can transfer relightable textures from a small number of input images to target 3D shapes across arbitrary categories.
arXiv Detail & Related papers (2024-01-17T18:55:49Z) - Consistent Mesh Diffusion [8.318075237885857]
Given a 3D mesh with a UV parameterization, we introduce a novel approach to generating textures from text prompts.
We demonstrate our approach on a dataset containing 30 meshes, taking approximately 5 minutes per mesh.
arXiv Detail & Related papers (2023-12-01T23:25:14Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using
Differentiable Rendering [54.35405028643051]
We present a new pipeline for acquiring a textured mesh in the wild with a single smartphone.
Our method first introduces an RGBD-aided structure from motion, which can yield filtered depth maps.
We adopt the neural implicit surface reconstruction method, which allows for high-quality mesh.
arXiv Detail & Related papers (2023-03-27T10:07:52Z) - Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models [21.622420436349245]
We present Text2Room, a method for generating room-scale textured 3D meshes from a given text prompt as input.
We leverage pre-trained 2D text-to-image models to synthesize a sequence of images from different poses.
In order to lift these outputs into a consistent 3D scene representation, we combine monocular depth estimation with a text-conditioned inpainting model.
arXiv Detail & Related papers (2023-03-21T16:21:02Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
Learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications.
We present a novel sampling algorithm by optimizing the gradient of predicted coordinates based on the variance on the sampling image.
We also adopt Frechet Inception Distance (FID) to form a loss function in learning, which helps bridging the gap between rendered images and input images.
arXiv Detail & Related papers (2021-04-29T07:52:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.