DiMeR: Disentangled Mesh Reconstruction Model
- URL: http://arxiv.org/abs/2504.17670v2
- Date: Mon, 26 May 2025 09:08:57 GMT
- Title: DiMeR: Disentangled Mesh Reconstruction Model
- Authors: Lutao Jiang, Jiantao Lin, Kanghao Chen, Wenhang Ge, Xin Yang, Yifan Jiang, Yuanhuiyi Lyu, Xu Zheng, Yinchuan Li, Yingcong Chen,
- Abstract summary: DiMeR is a novel geometry-texture disentangled feed-forward model with 3D supervision for sparse-view mesh reconstruction.<n>We streamline the algorithm of mesh extraction by eliminating modules with low performance/cost ratios and redesigning regularization losses with 3D supervision.<n>Extensive experiments demonstrate that DiMeR generalises across sparse-view-, single-image-, and text-to-3D tasks, consistently outperforming baselines.
- Score: 29.827345186012558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose DiMeR, a novel geometry-texture disentangled feed-forward model with 3D supervision for sparse-view mesh reconstruction. Existing methods confront two persistent obstacles: (i) textures can conceal geometric errors, i.e., visually plausible images can be rendered even with wrong geometry, producing multiple ambiguous optimization objectives in geometry-texture mixed solution space for similar objects; and (ii) prevailing mesh extraction methods are redundant, unstable, and lack 3D supervision. To solve these challenges, we rethink the inductive bias for mesh reconstruction. First, we disentangle the unified geometry-texture solution space, where a single input admits multiple feasible solutions, into geometry and texture spaces individually. Specifically, given that normal maps are strictly consistent with geometry and accurately capture surface variations, the normal maps serve as the sole input for geometry prediction in DiMeR, while the texture is estimated from RGB images. Second, we streamline the algorithm of mesh extraction by eliminating modules with low performance/cost ratios and redesigning regularization losses with 3D supervision. Notably, DiMeR still accepts raw RGB images as input by leveraging foundation models for normal prediction. Extensive experiments demonstrate that DiMeR generalises across sparse-view-, single-image-, and text-to-3D tasks, consistently outperforming baselines. On the GSO and OmniObject3D datasets, DiMeR significantly reduces Chamfer Distance by more than 30%.
Related papers
- Geometric Prior-Guided Neural Implicit Surface Reconstruction in the Wild [13.109693095684921]
We introduce a novel approach that applies multiple geometric constraints to the implicit surface optimization process.<n>First, we utilize sparse 3D points from structure-from-motion (SfM) to refine the signed distance function estimation for the reconstructed surface.<n>We also employ robust normal priors derived from a normal predictor, enhanced by edge prior filtering and multi-view consistency constraints.
arXiv Detail & Related papers (2025-05-12T09:17:30Z) - Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
We propose a novel approach for 3D mesh reconstruction from multi-view images.
Our method takes inspiration from large reconstruction models that use a transformer-based triplane generator and a Neural Radiance Field (NeRF) model trained on multi-view images.
arXiv Detail & Related papers (2024-06-09T05:19:24Z) - 2L3: Lifting Imperfect Generated 2D Images into Accurate 3D [16.66666619143761]
Multi-view (MV) 3D reconstruction is a promising solution to fuse generated MV images into consistent 3D objects.
However, the generated images usually suffer from inconsistent lighting, misaligned geometry, and sparse views, leading to poor reconstruction quality.
We present a novel 3D reconstruction framework that leverages intrinsic decomposition guidance, transient-mono prior guidance, and view augmentation to cope with the three issues.
arXiv Detail & Related papers (2024-01-29T02:30:31Z) - Weakly-Supervised 3D Reconstruction of Clothed Humans via Normal Maps [1.6462601662291156]
We present a novel deep learning-based approach to the 3D reconstruction of clothed humans using weak supervision via 2D normal maps.
Given a single RGB image or multiview images, our network infers a signed distance function (SDF) discretized on a tetrahedral mesh surrounding the body in a rest pose.
We demonstrate the efficacy of our approach for both network inference and 3D reconstruction.
arXiv Detail & Related papers (2023-11-27T18:06:35Z) - Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
This paper presents a simple yet powerful method for 3D human mesh reconstruction from a single RGB image.
Experimental results on benchmark datasets show that the proposed method efficiently improves the performance of 3D human mesh reconstruction.
arXiv Detail & Related papers (2023-04-19T08:45:26Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - Monocular 3D Object Reconstruction with GAN Inversion [122.96094885939146]
MeshInversion is a novel framework to improve the reconstruction of textured 3D meshes.
It exploits the generative prior of a 3D GAN pre-trained for 3D textured mesh synthesis.
Our framework obtains faithful 3D reconstructions with consistent geometry and texture across both observed and unobserved parts.
arXiv Detail & Related papers (2022-07-20T17:47:22Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images.
Planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods.
The proposed method outperforms previous methods by a large margin on 3D reconstruction quality.
arXiv Detail & Related papers (2022-05-05T17:59:55Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and
Visual Geometry [3.970492757288025]
We present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques.
We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only.
arXiv Detail & Related papers (2021-04-28T11:31:35Z) - Photometric Multi-View Mesh Refinement for High-Resolution Satellite
Images [24.245977127434212]
State-of-the-art reconstruction methods typically generate 2.5D elevation data.
We present an approach to recover full 3D surface meshes from multi-view satellite imagery.
arXiv Detail & Related papers (2020-05-10T20:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.