An Autonomous Network Orchestration Framework Integrating Large Language Models with Continual Reinforcement Learning
- URL: http://arxiv.org/abs/2502.16198v1
- Date: Sat, 22 Feb 2025 11:53:34 GMT
- Title: An Autonomous Network Orchestration Framework Integrating Large Language Models with Continual Reinforcement Learning
- Authors: Masoud Shokrnezhad, Tarik Taleb,
- Abstract summary: This paper proposes a framework called Autonomous Reinforcement Coordination (ARC) for a SemCom-enabled SAGIN.<n>ARC decomposes orchestration into two tiers, utilizing LLMs for high-level planning and RL agents for low-level decision-making.
- Score: 13.3347292702828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 6G networks aim to achieve global coverage, massive connectivity, and ultra-stringent requirements. Space-Air-Ground Integrated Networks (SAGINs) and Semantic Communication (SemCom) are essential for realizing these goals, yet they introduce considerable complexity in resource orchestration. Drawing inspiration from research in robotics, a viable solution to manage this complexity is the application of Large Language Models (LLMs). Although the use of LLMs in network orchestration has recently gained attention, existing solutions have not sufficiently addressed LLM hallucinations or their adaptation to network dynamics. To address this gap, this paper proposes a framework called Autonomous Reinforcement Coordination (ARC) for a SemCom-enabled SAGIN. This framework employs an LLM-based Retrieval-Augmented Generator (RAG) monitors services, users, and resources and processes the collected data, while a Hierarchical Action Planner (HAP) orchestrates resources. ARC decomposes orchestration into two tiers, utilizing LLMs for high-level planning and Reinforcement Learning (RL) agents for low-level decision-making, in alignment with the Mixture of Experts (MoE) concept. The LLMs utilize Chain-of-Thought (CoT) reasoning for few-shot learning, empowered by contrastive learning, while the RL agents employ replay buffer management for continual learning, thereby achieving efficiency, accuracy, and adaptability. Simulations are provided to demonstrate the effectiveness of ARC, along with a comprehensive discussion on potential future research directions to enhance and upgrade ARC.
Related papers
- LLM-Guided Open RAN: Empowering Hierarchical RAN Intelligent Control [56.94324843095396]
We propose the empowered hierarchical RIC (LLM-hRIC) framework to improve the collaboration between RICs.
This framework integrates LLMs with reinforcement learning (RL) for efficient network resource management.
We evaluate the LLM-hRIC framework in an integrated access and backhaul (IAB) network setting.
arXiv Detail & Related papers (2025-04-25T04:18:23Z) - Throughput-Optimal Scheduling Algorithms for LLM Inference and AI Agents [6.318292471845427]
We develop the queuing fundamentals for large language model (LLM) inference.
We prove that a large class of 'work-conserving' scheduling algorithms can achieve maximum throughput.
arXiv Detail & Related papers (2025-04-10T00:12:12Z) - Option Discovery Using LLM-guided Semantic Hierarchical Reinforcement Learning [16.654435148168172]
Large Language Models (LLMs) have shown remarkable promise in reasoning and decision-making.
We propose an LLM-guided hierarchical RL framework, termed LDSC, to enhance sample efficiency, generalization, and multi-task adaptability.
arXiv Detail & Related papers (2025-03-24T15:49:56Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.<n>Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Sibyl: Simple yet Effective Agent Framework for Complex Real-world Reasoning [12.80689911863731]
Sibyl is a powerful framework designed to tackle complex reasoning tasks by efficiently leveraging a minimal set of tools.
Sibyl implements a multi-agent debate-based jury to self-refine the final answers, ensuring a comprehensive and balanced approach.
Our experimental results on the GAIA benchmark test set reveal that the Sibyl agent achieves state-of-the-art performance with an average score of 34.55%.
arXiv Detail & Related papers (2024-07-15T13:45:40Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
Large Language Models (LLMs) have revolutionized language understanding and human-like text generation.
This paper explores new techniques to harness the power of LLMs for 6G (6th Generation) wireless communication technologies.
We introduce a novel Reinforcement Learning (RL) based framework that leverages LLMs for network deployment in wireless communications.
arXiv Detail & Related papers (2024-05-22T05:19:51Z) - When Large Language Models Meet Optical Networks: Paving the Way for Automation [17.4503217818141]
We propose a framework of LLM-empowered optical networks, facilitating intelligent control of the physical layer and efficient interaction with the application layer.
The proposed framework is verified on two typical tasks: network alarm analysis and network performance optimization.
The good response accuracies and sematic similarities of 2,400 test situations exhibit the great potential of LLM in optical networks.
arXiv Detail & Related papers (2024-05-14T10:46:33Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
We focus on solving one of the most important tasks in the field of speech processing, with speech foundation encoders and large language models (LLM)
Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM.
We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task.
arXiv Detail & Related papers (2024-02-13T23:25:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.