論文の概要: Leveraging Machine Learning for Accurate IoT Device Identification in Dynamic Wireless Contexts
- arxiv url: http://arxiv.org/abs/2405.17442v1
- Date: Wed, 15 May 2024 22:34:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-02 14:30:04.768862
- Title: Leveraging Machine Learning for Accurate IoT Device Identification in Dynamic Wireless Contexts
- Title(参考訳): 動的無線環境における正確なIoTデバイス識別のための機械学習の活用
- Authors: Bhagyashri Tushir, Vikram K Ramanna, Yuhong Liu, Behnam Dezfouli,
- Abstract要約: この研究は、細粒度チャネルのダイナミックスを捉えるための新しいアプローチとして「累積スコア」を導入している。
提案手法を実装し,実世界のシナリオにおけるデバイス識別の精度とオーバヘッドを測定した。
その結果、バランスの取れたデータ収集と機械学習アルゴリズムの蓄積スコアを組み込むことで、デバイス識別のF1スコアが97%以上に達することを確認した。
- 参考スコア(独自算出の注目度): 4.002351785644765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying IoT devices is crucial for network monitoring, security enforcement, and inventory tracking. However, most existing identification methods rely on deep packet inspection, which raises privacy concerns and adds computational complexity. More importantly, existing works overlook the impact of wireless channel dynamics on the accuracy of layer-2 features, thereby limiting their effectiveness in real-world scenarios. In this work, we define and use the latency of specific probe-response packet exchanges, referred to as "device latency," as the main feature for device identification. Additionally, we reveal the critical impact of wireless channel dynamics on the accuracy of device identification based on device latency. Specifically, this work introduces "accumulation score" as a novel approach to capturing fine-grained channel dynamics and their impact on device latency when training machine learning models. We implement the proposed methods and measure the accuracy and overhead of device identification in real-world scenarios. The results confirm that by incorporating the accumulation score for balanced data collection and training machine learning algorithms, we achieve an F1 score of over 97% for device identification, even amidst wireless channel dynamics, a significant improvement over the 75% F1 score achieved by disregarding the impact of channel dynamics on data collection and device latency.
- Abstract(参考訳): IoTデバイスを特定することは、ネットワーク監視、セキュリティ執行、在庫追跡に不可欠である。
しかし、既存の識別手法の多くはディープパケット検査に依存しており、プライバシー上の懸念を生じさせ、計算の複雑さを増す。
さらに重要なことは、既存の研究はレイヤ2の機能の精度に無線チャネルのダイナミクスが与える影響を見逃し、現実のシナリオにおけるその効果を制限していることである。
本研究では,デバイス識別の主要な特徴として,特定のプローブ応答パケット交換器の遅延を「デバイスレイテンシ」として定義し,使用する。
さらに,無線チャネルのダイナミクスがデバイス識別の精度に与える影響を明らかにする。
具体的には、マシンラーニングモデルをトレーニングする際の細粒度チャネルのダイナミックスとデバイス遅延への影響をキャプチャするための、新しいアプローチとして、"蓄積スコア"を導入する。
提案手法を実装し,実世界のシナリオにおけるデバイス識別の精度とオーバヘッドを測定した。
その結果、バランスの取れたデータ収集と学習機械学習アルゴリズムの集積スコアを組み込むことで、無線チャネル力学においてもデバイス識別において97%以上のF1スコアを達成し、データ収集とデバイスのレイテンシに対するチャネルダイナミクスの影響を無視して、75%のF1スコアを大幅に改善することが確認された。
関連論文リスト
- Locality Sensitive Hashing for Network Traffic Fingerprinting [5.062312533373298]
ネットワークトラフィックのフィンガープリントにLSH(Locality-sensitive hashing)を用いる。
本手法は,ネットワーク内のデバイスを識別する際の精度を約94%向上し,最先端の精度を12%向上させる。
論文 参考訳(メタデータ) (2024-02-12T21:14:37Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
次世代ネットワークは、人間、機械、デバイス、システムをシームレスに相互接続することを目的としている。
この課題に対処するため、Zero Trust(ZT)パラダイムは、ネットワークの完全性とデータの機密性を保護するための重要な方法として登場した。
この研究は、新しいディープラーニングベースの無線デバイス識別フレームワークであるEPS-CNNを導入している。
論文 参考訳(メタデータ) (2024-02-08T00:23:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Attention-Enhanced Deep Learning for Device-Free Through-the-Wall
Presence Detection Using Indoor WiFi Systems [9.087163485833054]
WiFi信号のチャネル状態情報(CSI)を用いた人間の存在検知システムを提案する。
本システムでは,CSIデータから情報サブキャリアを自動的に選択するためのアテンションメカニズムを用いて,アテンション検出のためのアテンション強化深層学習(ALPD)と命名した。
提案するALPDシステムは,CSIデータセットを収集するための一対のWiFiアクセスポイント(AP)をデプロイすることで評価し,さらにいくつかのベンチマークと比較した。
論文 参考訳(メタデータ) (2023-04-25T19:17:36Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
本稿では,まず,不整合表現学習(DRL)の枠組みを提案し,入力信号を逆学習によりデバイス関連成分とデバイス関連成分に分解する。
提案フレームワークにおける暗黙的なデータ拡張は、デバイス非関連チャネル統計の過度な適合を避けるために、RFF抽出器に正規化を課す。
実験により、DR-RFFと呼ばれる提案手法は、未知の複雑な伝播環境に対する一般化可能性の観点から従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-04T15:46:48Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
我々は、N-BaIoT、FedDetectアルゴリズム、IoTデバイスのシステム設計を使用した合成データセットを含むFedIoTプラットフォームを構築します。
現実的なIoTデバイス(PI)のネットワークにおいて,FedIoTプラットフォームとFedDetectアルゴリズムをモデルおよびシステムパフォーマンスの両方で評価する。
論文 参考訳(メタデータ) (2021-06-15T08:53:42Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
無線信号を用いた屋内環境における各種活動の分類は,様々な応用の新たな技術である。
本論文では,屋内環境におけるマルチインプット・マルチアウトプット(MIMO)システムから,機械学習を用いて移動物体の分類を解析する。
論文 参考訳(メタデータ) (2021-02-09T15:48:35Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
我々は、MEC対応カメラ監視システムにおいて、re-IDを用いた歩行者属性認識のための新しいモデルの設計を行う。
本稿では,属性認識と人物再IDを協調的に考慮し,分散モジュールの集合を持つ新しい推論フレームワークを提案する。
そこで我々は,提案した分散推論フレームワークのモジュール分布の学習に基づくアルゴリズムを考案した。
論文 参考訳(メタデータ) (2020-08-12T12:03:27Z) - A Comparative Study of AI-based Intrusion Detection Techniques in
Critical Infrastructures [4.8041243535151645]
本稿では,重要なアプリケーションを追跡する無線接続型センサに対するAI駆動の侵入検知システムについて比較検討する。
具体的には、収集したトラフィックの侵入行動を認識するために、機械学習、深層学習、強化学習ソリューションの使用について、詳細な分析を行う。
その結果、Adaptively SupervisedおよびClustered Hybrid IDS、Boltzmann MachineベースのClustered IDS、Q-learningベースのIDSの3つの異なるIDSのパフォーマンス指標が示された。
論文 参考訳(メタデータ) (2020-07-24T20:55:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。