論文の概要: VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification
- arxiv url: http://arxiv.org/abs/2504.10556v1
- Date: Mon, 14 Apr 2025 13:38:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:11:05.065772
- Title: VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification
- Title(参考訳): 一般化GNSS干渉分類におけるデータ拡張と圧縮のためのVAEに基づく特徴分散
- Authors: Lucas Heublein, Simon Kocher, Tobias Feigl, Alexander Rügamer, Christopher Mutschler, Felix Ott,
- Abstract要約: 干渉の正確な分類を可能にする重要な潜伏特徴を抽出するために, アンタングル化のための変分オートエンコーダ (VAE) を提案する。
提案するVAEは512から8,192の範囲のデータ圧縮率を実現し,99.92%の精度を実現している。
- 参考スコア(独自算出の注目度): 42.14439854721613
- License:
- Abstract: Distributed learning and Edge AI necessitate efficient data processing, low-latency communication, decentralized model training, and stringent data privacy to facilitate real-time intelligence on edge devices while reducing dependency on centralized infrastructure and ensuring high model performance. In the context of global navigation satellite system (GNSS) applications, the primary objective is to accurately monitor and classify interferences that degrade system performance in distributed environments, thereby enhancing situational awareness. To achieve this, machine learning (ML) models can be deployed on low-resource devices, ensuring minimal communication latency and preserving data privacy. The key challenge is to compress ML models while maintaining high classification accuracy. In this paper, we propose variational autoencoders (VAEs) for disentanglement to extract essential latent features that enable accurate classification of interferences. We demonstrate that the disentanglement approach can be leveraged for both data compression and data augmentation by interpolating the lower-dimensional latent representations of signal power. To validate our approach, we evaluate three VAE variants - vanilla, factorized, and conditional generative - on four distinct datasets, including two collected in controlled indoor environments and two real-world highway datasets. Additionally, we conduct extensive hyperparameter searches to optimize performance. Our proposed VAE achieves a data compression rate ranging from 512 to 8,192 and achieves an accuracy up to 99.92%.
- Abstract(参考訳): 分散学習とエッジAIは、効率的なデータ処理、低レイテンシ通信、分散モデルトレーニング、厳格なデータプライバシを必要とし、エッジデバイスのリアルタイムインテリジェンスを促進しながら、集中的なインフラストラクチャへの依存を低減し、高いモデルパフォーマンスを保証する。
グローバルナビゲーション衛星システム(GNSS)の適用状況において、主な目的は、分散環境におけるシステム性能を低下させる干渉を正確に監視し、分類し、状況認識を高めることである。
これを実現するため、機械学習(ML)モデルは低リソースデバイスにデプロイでき、通信遅延を最小限に抑え、データのプライバシを保存することができる。
鍵となる課題は、高い分類精度を維持しながらMLモデルを圧縮することである。
本稿では, 干渉の正確な分類を可能にする重要な潜伏特徴を抽出するために, アンタングル化のための変分オートエンコーダ(VAE)を提案する。
本稿では,信号パワーの低次元潜在表現を補間することにより,データ圧縮とデータ拡張の両面において,ディジアングル化のアプローチを活用できることを実証する。
提案手法を検証するために,室内環境下で収集した2つのデータと実世界の高速道路の2つのデータセットを含む4つの異なるデータセットから,バニラ,因子化,条件生成の3つのVAE変異体を評価した。
さらに、性能を最適化するために、広範囲なハイパーパラメーター探索を行う。
提案するVAEは512から8,192の範囲のデータ圧縮率を実現し,99.92%の精度を実現している。
関連論文リスト
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
フェデレーション学習により、エッジデバイスは、データのローカライズを維持しながら、データのプライバシを維持しながら、グローバルモデルを協調的にトレーニングすることが可能になる。
我々は,AI強化データ拡張と均衡サンプリング戦略により,IIDからIDDへの非IIDデータ分布を近似する,フェデレーション最適化技術のための新しいプラグインを提案する。
論文 参考訳(メタデータ) (2024-10-31T11:13:47Z) - How Important are Data Augmentations to Close the Domain Gap for Object Detection in Orbit? [15.550663626482903]
宇宙空間におけるコンピュータビジョンの領域ギャップを埋めるためのデータ拡張の有効性について検討する。
本稿では,軌道画像に観察される視覚効果をエミュレートするために開発された2つの新しいデータ拡張法を提案する。
論文 参考訳(メタデータ) (2024-10-21T08:24:46Z) - Efficient Federated Intrusion Detection in 5G ecosystem using optimized BERT-based model [0.7100520098029439]
5Gは高度なサービスを提供し、IoT(Internet of Things)内のインテリジェントトランスポート、コネクテッドヘルスケア、スマートシティなどのアプリケーションをサポートする。
これらの進歩は、ますます高度なサイバー攻撃を伴う、重大なセキュリティ上の課題をもたらす。
本稿では,連合学習と大規模言語モデル(LLM)を用いた頑健な侵入検知システム(IDS)を提案する。
論文 参考訳(メタデータ) (2024-09-28T15:56:28Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
インテリジェントな無線デバイス群は、ドローンの助けを借りて共有ニューラルネットワークモデルを訓練する。
提案したフレームワークは,トレーニングの大幅な高速化を実現し,ドローンホバリング時間の平均24%と87%の削減を実現している。
論文 参考訳(メタデータ) (2023-03-03T23:46:25Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning(FL)は、エッジデバイスによる大規模データの分散処理のための新興フレームワークである。
本稿では,FLAD FedADMMに基づく新しいプロトコルを提案する。
我々は,FedADMMが通信効率の点で,すべてのベースライン手法を一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-07T15:58:33Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。