論文の概要: Towards Gradient-based Time-Series Explanations through a SpatioTemporal Attention Network
- arxiv url: http://arxiv.org/abs/2405.17444v1
- Date: Sat, 18 May 2024 02:36:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-02 14:30:04.766670
- Title: Towards Gradient-based Time-Series Explanations through a SpatioTemporal Attention Network
- Title(参考訳): 時空間アテンションネットワークによる勾配型時系列記述に向けて
- Authors: Min Hun Lee,
- Abstract要約: 時系列データに基づいて,グローバルおよびローカルなデータビューと弱い教師付きラベルを用いて,ビデオ分類のためのSTANモデルを訓練した。
次に、勾配に基づくXAI手法(例えば、サリエンシマップ)を活用して、時系列データの健全なフレームを同定した。
4つの医療関連活動のデータセットを用いた実験によると、STANモデルはビデオの重要なフレームを識別する可能性を示した。
- 参考スコア(独自算出の注目度): 4.29941614612359
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we explore the feasibility of using a transformer-based, spatiotemporal attention network (STAN) for gradient-based time-series explanations. First, we trained the STAN model for video classifications using the global and local views of data and weakly supervised labels on time-series data (i.e. the type of an activity). We then leveraged a gradient-based XAI technique (e.g. saliency map) to identify salient frames of time-series data. According to the experiments using the datasets of four medically relevant activities, the STAN model demonstrated its potential to identify important frames of videos.
- Abstract(参考訳): 本稿では,変圧器をベースとした時空間アテンションネットワーク(STAN)の適用可能性について検討する。
まず、時系列データ(アクティビティの種類)に基づいて、グローバルおよびローカルなデータビューと弱い教師付きラベルを用いて、ビデオ分類のためのSTANモデルを訓練した。
次に、勾配に基づくXAI手法(例えばSaliency map)を活用し、時系列データの健全なフレームを同定した。
4つの医療関連活動のデータセットを用いた実験によると、STANモデルはビデオの重要なフレームを識別する可能性を示した。
関連論文リスト
- TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes [63.95928298690001]
ニューラル・テンポラル・ポイント・プロセス(TPP)に基づく新規かつ原則化されたスキャンパスダイナミクスのアプローチであるTPP-Gazeを提案する。
提案手法は,最先端手法と比較して総合的に優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-30T19:22:38Z) - Temporal Embeddings: Scalable Self-Supervised Temporal Representation
Learning from Spatiotemporal Data for Multimodal Computer Vision [1.4127889233510498]
移動活動時系列に基づいて景観を階層化する新しい手法を提案する。
ピクセルワイズ埋め込みは、タスクベースのマルチモーダルモデリングに使用できるイメージライクなチャネルに変換される。
論文 参考訳(メタデータ) (2023-10-16T02:53:29Z) - Temporal Graph Benchmark for Machine Learning on Temporal Graphs [54.52243310226456]
テンポラルグラフベンチマーク(TGB)は、困難で多様なベンチマークデータセットのコレクションである。
各データセットをベンチマークし、共通のモデルのパフォーマンスがデータセット間で大きく異なることを発見した。
TGBは、再現可能でアクセス可能な時間グラフ研究のための自動機械学習パイプラインを提供する。
論文 参考訳(メタデータ) (2023-07-03T13:58:20Z) - Self-Supervised Temporal Analysis of Spatiotemporal Data [2.2720298829059966]
地理空間活動の時間的パターンと土地利用のタイプとの間には相関関係がある。
移動活動時系列に基づいて景観を階層化する,新たな自己教師型手法を提案する。
実験により、時間埋め込みは時系列データの意味論的に意味のある表現であり、異なるタスクにまたがって効果的であることが示されている。
論文 参考訳(メタデータ) (2023-04-25T20:34:38Z) - Importance attribution in neural networks by means of persistence
landscapes of time series [0.5156484100374058]
分類タスクにおいて最も関連性の高いランドスケープレベルを識別できるネットワークアーキテクチャにゲーティング層を含める。
我々は、分類決定に関する洞察を与える時系列の近似形状を再構成する。
論文 参考訳(メタデータ) (2023-02-06T21:43:39Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
本稿では,逐次時間間隔でサリエンシマップを出力する新たなサリエンシ予測モデルを提案する。
提案手法は,学習した時間マップを組み合わせることで,サリエンシ予測を局所的に調整する。
私たちのコードはGitHubで公開されます。
論文 参考訳(メタデータ) (2023-01-05T22:10:16Z) - Contrastive Learning for Time Series on Dynamic Graphs [17.46524362769774]
本稿では,グラフと時系列の結合表現の教師なし学習のためのGraphTNCというフレームワークを提案する。
実世界のデータセットを用いた分類作業において有益であることを示す。
論文 参考訳(メタデータ) (2022-09-21T21:14:28Z) - TCGL: Temporal Contrastive Graph for Self-supervised Video
Representation Learning [79.77010271213695]
本稿では,TCGL(Temporal Contrastive Graph Learning)という,ビデオの自己教師型学習フレームワークを提案する。
TCGLは、フレームとスニペットの順序に関する以前の知識をグラフ構造、すなわち、インター/インタースニペットの時間トラストグラフ(TCG)に統合します。
ラベルなしビデオの監視信号を生成するために,適応スニペット順序予測(ASOP)モジュールを導入する。
論文 参考訳(メタデータ) (2021-12-07T09:27:56Z) - HighlightMe: Detecting Highlights from Human-Centric Videos [52.84233165201391]
我々は,人間中心のビデオからハイライト可能な抜粋を検出するために,ドメインとユーザに依存しないアプローチを提案する。
本研究では,時空間グラフ畳み込みを用いたオートエンコーダネットワークを用いて,人間の活動やインタラクションを検出する。
我々は,最先端の手法に比べて,人手によるハイライトのマッチングの平均精度が4~12%向上したことを観察した。
論文 参考訳(メタデータ) (2021-10-05T01:18:15Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - STAN: Spatio-Temporal Attention Network for Next Location Recommendation [8.093847272089475]
位置推薦のためのS-Temporal Attention Network (STAN)を提案する。
STANは、全てのチェックインの相対時間情報と、軌道に沿った自己注意層を利用する。
実験結果から,既存の最先端手法を9-17%上回る結果が得られた。
論文 参考訳(メタデータ) (2021-02-08T10:04:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。