論文の概要: Sports center customer segmentation: a case study
- arxiv url: http://arxiv.org/abs/2405.17467v1
- Date: Thu, 23 May 2024 22:05:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 00:10:18.976648
- Title: Sports center customer segmentation: a case study
- Title(参考訳): スポーツセンターの顧客セグメンテーション--事例研究
- Authors: Juan Soto, Ramón Carmenaty, Miguel Lastra, Juan M. Fernández-Luna, José M. Benítez,
- Abstract要約: この調査は顧客セグメンテーションの健全な提案につながった。
この提案のハイライトは、問題を分解する便利なデータ分割、適応距離関数の定義、遺伝的アルゴリズムによる最適化である。
- 参考スコア(独自算出の注目度): 0.4427312315598971
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Customer segmentation is a fundamental process to develop effective marketing strategies, personalize customer experience and boost their retention and loyalty. This problem has been widely addressed in the scientific literature, yet no definitive solution for every case is available. A specific case study characterized by several individualizing features is thoroughly analyzed and discussed in this paper. Because of the case properties a robust and innovative approach to both data handling and analytical processes is required. The study led to a sound proposal for customer segmentation. The highlights of the proposal include a convenient data partition to decompose the problem, an adaptive distance function definition and its optimization through genetic algorithms. These comprehensive data handling strategies not only enhance the dataset reliability for segmentation analysis but also support the operational efficiency and marketing strategies of sports centers, ultimately improving the customer experience.
- Abstract(参考訳): 顧客セグメンテーションは、効果的なマーケティング戦略を開発し、顧客体験をパーソナライズし、維持と忠誠心を高めるための基本的なプロセスである。
この問題は科学文献で広く取り上げられているが、すべてのケースに対して決定的な解決策は得られていない。
本論文では,複数の個別化特徴を特徴とする特定のケーススタディを網羅的に分析し,考察する。
そのため、データ処理と分析プロセスの両方に対する堅牢で革新的なアプローチが必要である。
この調査は顧客セグメンテーションの健全な提案につながった。
この提案のハイライトは、問題を分解する便利なデータ分割、適応距離関数の定義、遺伝的アルゴリズムによる最適化である。
これらの包括的なデータ処理戦略は、セグメンテーション分析のデータセット信頼性を高めるだけでなく、スポーツセンターの運用効率とマーケティング戦略をサポートし、最終的には顧客エクスペリエンスを改善します。
関連論文リスト
- InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation [79.09622602860703]
3つの重要な特徴を持つベンチマークデータセットであるInsightBenchを紹介します。
財務やインシデント管理といったさまざまなビジネスユースケースを表す100のデータセットで構成されている。
単一のクエリに回答することに焦点を当てた既存のベンチマークとは異なり、InsightBenchは、エンドツーエンドのデータ分析を実行する能力に基づいてエージェントを評価する。
論文 参考訳(メタデータ) (2024-07-08T22:06:09Z) - Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
本稿では,クライアントの完全参加によって達成されるパフォーマンスをエミュレートする新しいクライアント選択戦略を提案する。
1ラウンドで、クライアントサブセットとフルクライアントセット間の勾配空間推定誤差を最小化し、クライアントを選択する。
複数ラウンド選択において、類似したデータ分布を持つクライアントが選択される頻度に類似することを保証する、新しい個性制約を導入する。
論文 参考訳(メタデータ) (2024-05-22T12:27:24Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
フェデレートラーニング(FL)は、分散クライアント間の機械学習モデルの協調トレーニングにおいて、顕著なアプローチとして登場した。
我々は,この課題に対処するために設計された,革新的なクライアント適応アルゴリズムであるFedCAdaを紹介する。
我々はFedCAdaが適応性、収束性、安定性、全体的な性能の点で最先端の手法より優れていることを実証する。
論文 参考訳(メタデータ) (2024-05-20T06:12:33Z) - An explainable machine learning-based approach for analyzing customers'
online data to identify the importance of product attributes [0.6437284704257459]
本稿では,製品開発におけるデザインの包括的意味を抽出するゲーム理論機械学習(ML)手法を提案する。
提案手法をKaggleの実際のラップトップのデータセットに適用し,結果に基づいて設計上の意味を導出する。
論文 参考訳(メタデータ) (2024-02-03T20:50:48Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Data-Driven Market Segmentation in Hospitality Using Unsupervised
Machine Learning [0.0]
この研究は、階層的クラスタリングによってゲストプロファイルをセグメント化することで、データ駆動型アプローチを提供する。
本研究の目的は、生データから実行可能な洞察まで、プロセスのステップを提供することである。
論文 参考訳(メタデータ) (2021-11-04T13:21:15Z) - Augmenting Decision Making via Interactive What-If Analysis [4.920817773181235]
現在、ビジネスユーザーは長期にわたる探索分析を行う必要がある。
データセットの複雑さの増大と人間の認知的限界が組み合わさって、複数の仮説を乗り越えることが困難になる。
ここでは、ビジネスユーザがデータ属性の集合間の関係(機能)について対話的に学び、推論できるために必要な4つの機能について論じます。
論文 参考訳(メタデータ) (2021-09-13T17:54:30Z) - Dynamically Tie the Right Offer to the Right Customer in
Telecommunications Industry [0.0]
本研究は,顧客ターゲットのキャンペーン依存変数に着目した概念モデルを提案する。
この研究の顧客セグメンテーションの結果は、マーケターにとってより意味があり、関連性があるかもしれない。
論文 参考訳(メタデータ) (2020-10-18T16:44:51Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。