論文の概要: InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation
- arxiv url: http://arxiv.org/abs/2407.06423v2
- Date: Thu, 10 Oct 2024 14:50:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 23:13:33.204399
- Title: InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation
- Title(参考訳): InsightBench: マルチステップインサイト生成によるビジネス分析エージェントの評価
- Authors: Gaurav Sahu, Abhay Puri, Juan Rodriguez, Amirhossein Abaskohi, Mohammad Chegini, Alexandre Drouin, Perouz Taslakian, Valentina Zantedeschi, Alexandre Lacoste, David Vazquez, Nicolas Chapados, Christopher Pal, Sai Rajeswar Mudumba, Issam Hadj Laradji,
- Abstract要約: 3つの重要な特徴を持つベンチマークデータセットであるInsightBenchを紹介します。
財務やインシデント管理といったさまざまなビジネスユースケースを表す100のデータセットで構成されている。
単一のクエリに回答することに焦点を当てた既存のベンチマークとは異なり、InsightBenchは、エンドツーエンドのデータ分析を実行する能力に基づいてエージェントを評価する。
- 参考スコア(独自算出の注目度): 79.09622602860703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data analytics is essential for extracting valuable insights from data that can assist organizations in making effective decisions. We introduce InsightBench, a benchmark dataset with three key features. First, it consists of 100 datasets representing diverse business use cases such as finance and incident management, each accompanied by a carefully curated set of insights planted in the datasets. Second, unlike existing benchmarks focusing on answering single queries, InsightBench evaluates agents based on their ability to perform end-to-end data analytics, including formulating questions, interpreting answers, and generating a summary of insights and actionable steps. Third, we conducted comprehensive quality assurance to ensure that each dataset in the benchmark had clear goals and included relevant and meaningful questions and analysis. Furthermore, we implement a two-way evaluation mechanism using LLaMA-3 as an effective, open-source evaluator to assess agents' ability to extract insights. We also propose AgentPoirot, our baseline data analysis agent capable of performing end-to-end data analytics. Our evaluation on InsightBench shows that AgentPoirot outperforms existing approaches (such as Pandas Agent) that focus on resolving single queries. We also compare the performance of open- and closed-source LLMs and various evaluation strategies. Overall, this benchmark serves as a testbed to motivate further development in comprehensive automated data analytics.
- Abstract(参考訳): データ分析は、組織が効果的な意思決定を行うのに役立つデータから貴重な洞察を抽出するために不可欠である。
3つの重要な特徴を持つベンチマークデータセットであるInsightBenchを紹介します。
まず、金融やインシデント管理といったさまざまなビジネスユースケースを表す100のデータセットで構成され、それぞれにデータセットに植えられた、慎重にキュレートされた洞察セットが付属する。
第二に、単一のクエリへの回答に焦点を当てた既存のベンチマークとは異なり、InsightBenchは、質問の定式化、回答の解釈、洞察と実行可能なステップの要約生成を含むエンドツーエンドのデータ分析を実行する能力に基づいて、エージェントを評価する。
第3に、ベンチマークの各データセットが明確な目標を持ち、関連する意味のある質問や分析を含むように、包括的な品質保証を実施しました。
さらに,LLaMA-3を用いた双方向評価機構を実装し,エージェントのインサイト抽出能力を評価する。
また,エンド・ツー・エンドのデータ分析が可能なベースラインデータ解析エージェントであるAgentPoirotを提案する。
InsightBenchの評価は、AgentPoirotが単一クエリの解決にフォーカスした既存のアプローチ(Pandas Agentなど)より優れていることを示している。
また,オープンソース LLM とクローズドソース LLM の性能および各種評価戦略を比較した。
全体として、このベンチマークは包括的な自動データ分析のさらなる開発を動機付けるためのテストベッドとして機能する。
関連論文リスト
- PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
本稿では,データ視覚化における大規模言語モデルの習熟度を評価するために設計された,新しい合成データセットを提案する。
我々のデータセットは、制御されたパラメータを使って生成され、潜在的な現実世界シナリオの包括的カバレッジが保証されます。
我々は、画像中の視覚データに関連する質問を多モーダルテキストプロンプトを用いて、いくつかの最先端モデルをベンチマークする。
論文 参考訳(メタデータ) (2024-09-04T11:19:17Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - DCA-Bench: A Benchmark for Dataset Curation Agents [9.60250892491588]
隠れたデータセットの品質問題を検知する大規模言語モデルの能力を測定するために,データセットキュレーションエージェントベンチマークであるDCA-Benchを提案する。
具体的には、テストベッドとして8つのオープンデータセットプラットフォームから、さまざまな実世界のデータセット品質の問題を収集します。
提案したベンチマークは、単に問題解決を行うのではなく、問題発見におけるLLMの能力を測定するためのテストベッドとしても機能する。
論文 参考訳(メタデータ) (2024-06-11T14:02:23Z) - CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems [10.71630696651595]
知識集約的なタスクを達成するエージェントとしてLLMを使用する複合AIシステム(CAS)は、データベースやAIコミュニティにおいて大きな関心を集めている。
マルチモーダルデータソースのサイロは、そのタスクを達成するための適切なデータソースを特定するのを困難にしている。
我々はエンタープライズデータプラットフォームの複雑さをモデル化したベンチマークであるCMDBenchを提案する。
論文 参考訳(メタデータ) (2024-06-02T01:10:41Z) - InfiAgent-DABench: Evaluating Agents on Data Analysis Tasks [84.7788065721689]
本稿では,データ解析タスクにおけるLSMに基づくエージェントの評価に特化して設計された最初のベンチマークであるInfiAgent-DABenchを紹介する。
このベンチマークには52のCSVファイルから得られた257のデータ分析質問からなるデータセットであるDAEvalが含まれている。
エージェントフレームワーク上に構築し,DABench 上で GPT-3.5 を3.9% 上回る特殊エージェント DAAgent を開発した。
論文 参考訳(メタデータ) (2024-01-10T19:04:00Z) - On the Evaluation and Refinement of Vision-Language Instruction Tuning
Datasets [71.54954966652286]
VLIT(Vision-Language Instruction-Tuning)データセットの評価を試みる。
各データセットから高いSQのサンプルを収集し,新しいデータセットREVO-LIONを構築した。
注目すべきは、完全なデータの半分でなくても、REVO-LIONでトレーニングされたモデルは、単にすべてのVLITデータセットを追加するのに匹敵するパフォーマンスを達成することができることだ。
論文 参考訳(メタデータ) (2023-10-10T13:01:38Z) - Benchmarking Foundation Models with Language-Model-as-an-Examiner [47.345760054595246]
本稿では,新しいベンチマークフレームワークLanguage-Model-as-an-Examinerを提案する。
LMは、その知識に基づいて質問を定式化し、基準のない方法で応答を評価する、知識に富んだ検査者として機能する。
論文 参考訳(メタデータ) (2023-06-07T06:29:58Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。