論文の概要: Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey
- arxiv url: http://arxiv.org/abs/2405.17495v1
- Date: Sat, 25 May 2024 16:05:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 00:00:30.037443
- Title: Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey
- Title(参考訳): 有効性、セキュリティ、適用性のための垂直的フェデレーション学習:調査
- Authors: Mang Ye, Wei Shen, Eduard Snezhko, Vassili Kovalev, Pong C. Yuen, Bo Du,
- Abstract要約: Vertical Federated Learning(VFL)は、プライバシ保護のための分散学習パラダイムである。
近年の研究では、VFLの様々な課題に対処する有望な成果が示されている。
この調査は、最近の展開を体系的に概観する。
- 参考スコア(独自算出の注目度): 67.48187503803847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vertical Federated Learning (VFL) is a privacy-preserving distributed learning paradigm where different parties collaboratively learn models using partitioned features of shared samples, without leaking private data. Recent research has shown promising results addressing various challenges in VFL, highlighting its potential for practical applications in cross-domain collaboration. However, the corresponding research is scattered and lacks organization. To advance VFL research, this survey offers a systematic overview of recent developments. First, we provide a history and background introduction, along with a summary of the general training protocol of VFL. We then revisit the taxonomy in recent reviews and analyze limitations in-depth. For a comprehensive and structured discussion, we synthesize recent research from three fundamental perspectives: effectiveness, security, and applicability. Finally, we discuss several critical future research directions in VFL, which will facilitate the developments in this field. We provide a collection of research lists and periodically update them at https://github.com/shentt67/VFL_Survey.
- Abstract(参考訳): Vertical Federated Learning(VFL)は、プライベートデータをリークすることなく、共有サンプルの分割された機能を使用して、さまざまなパーティが協力してモデルを学習する、プライバシ保護の分散学習パラダイムである。
近年の研究では、VFLにおける様々な課題に対処する有望な結果が示されており、ドメイン間コラボレーションにおける実践的応用の可能性を強調している。
しかし、対応する研究は散逸し、組織が欠如している。
VFL研究を進めるために,本調査は最近の進展を体系的に概観する。
まず、VFLの一般的なトレーニングプロトコルの概要とともに、歴史と背景を紹介する。
次に、最近のレビューで分類を再検討し、詳細な制限を分析します。
包括的かつ構造化された議論では、有効性、セキュリティ、適用性という3つの基本的な視点から最近の研究を合成する。
最後に,VFLにおけるいくつかの重要な研究の方向性について論じる。
調査リストのコレクションを提供し、https://github.com/shentt67/VFL_Survey.comで定期的に更新します。
関連論文リスト
- A Survey on Contribution Evaluation in Vertical Federated Learning [26.32678862011122]
Vertical Federated Learning (VFL)は、プライバシの問題に対処する機械学習において、重要なアプローチとして登場した。
本稿では,VFLにおけるコントリビューション評価について概説する。
コントリビューション評価を含むVFLにおける様々なタスクについて検討し、必要な評価特性を解析する。
論文 参考訳(メタデータ) (2024-05-03T06:32:07Z) - A Survey of Privacy Threats and Defense in Vertical Federated Learning:
From Model Life Cycle Perspective [31.19776505014808]
我々は、垂直的フェデレーションラーニングにおけるプライバシー攻撃と防衛の最先端に関する、最初の総合的な調査を行う。
我々は,攻撃と防御の両面において,その特徴に基づいて,オープンな課題と今後の研究方向性について議論する。
論文 参考訳(メタデータ) (2024-02-06T04:22:44Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - Federated Learning for Generalization, Robustness, Fairness: A Survey
and Benchmark [55.898771405172155]
フェデレートラーニングは、異なる当事者間のプライバシー保護コラボレーションのための有望なパラダイムとして登場した。
我々は,連合学習研究の重要かつ最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2023-11-12T06:32:30Z) - A Survey of Federated Unlearning: A Taxonomy, Challenges and Future
Directions [71.16718184611673]
プライバシ保護のためのフェデレートラーニング(FL)の進化により、忘れられる権利を実装する必要性が高まっている。
選択的な忘れ方の実装は、その分散した性質のため、FLでは特に困難である。
Federated Unlearning(FU)は、データプライバシの必要性の増加に対応する戦略的ソリューションとして登場した。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - VFLAIR: A Research Library and Benchmark for Vertical Federated Learning [14.878602173713686]
垂直学習(VFL)は、同じグループのユーザの異なる特徴を持つ参加者が、生のデータやモデルパラメータを公開せずに協調トレーニングを達成できるようにする、協調トレーニングパラダイムとして登場した。
近年、VFLは研究の可能性や現実世界の応用に大きな注目を集めているが、様々な種類のデータ推論やバックドア攻撃の防衛など、依然として重大な課題に直面している。
我々は、様々なモデル、データセット、プロトコルによるVFLトレーニングと、攻撃と防御戦略の総合的な評価のための標準化されたモジュールをサポートする、フェデレーションで軽量なVFLフレームワークであるVFLAIRを提案する。
論文 参考訳(メタデータ) (2023-10-15T13:18:31Z) - Heterogeneous Federated Learning: State-of-the-art and Research
Challenges [117.77132819796105]
不均一フェデレートラーニング(HFL)はより困難であり、それに対応するソリューションは多様で複雑である。
HFLの新たな進歩を概説し,既存のHFL手法の新たな分類法を提案する。
HFLにおけるいくつかの重要かつ将来的な研究方向性について論じる。
論文 参考訳(メタデータ) (2023-07-20T06:32:14Z) - A Survey on Vertical Federated Learning: From a Layered Perspective [21.639062199459925]
本稿では,垂直連合学習(VFL)の現状を階層的視点から検討する。
我々は、VFLのコアコンポーネント、すなわちセキュアな垂直連合機械学習アルゴリズムを分析するために、新しいMOSP木分類法を設計する。
我々の分類学は、機械学習モデル(M)、保護オブジェクト(O)、セキュリティモデル(S)、プライバシ保護プロトコル(P)の4つの側面を考察している。
論文 参考訳(メタデータ) (2023-04-04T14:33:30Z) - Vertical Federated Learning: Concepts, Advances and Challenges [18.38260017835129]
VFL(Vertical Federated Learning)の概念とアルゴリズムについてレビューする。
VFL設定とプライバシ保護プロトコルを網羅的に分類する。
本稿では,コミュニケーション,計算,プライバシ,有効性,公平性といった制約を考慮した統合フレームワーク VFLow を提案する。
論文 参考訳(メタデータ) (2022-11-23T10:00:06Z) - FedNLP: A Research Platform for Federated Learning in Natural Language
Processing [55.01246123092445]
NLPのフェデレーションラーニングのための研究プラットフォームであるFedNLPを紹介します。
FedNLPは、テキスト分類、シーケンスタグ付け、質問応答、Seq2seq生成、言語モデリングなど、NLPで一般的なタスクの定式化をサポートしている。
FedNLPによる予備実験では、分散型データセットと集中型データセットの学習には大きなパフォーマンスギャップが存在することが明らかになった。
論文 参考訳(メタデータ) (2021-04-18T11:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。