論文の概要: Efficient Model Compression for Hierarchical Federated Learning
- arxiv url: http://arxiv.org/abs/2405.17522v1
- Date: Mon, 27 May 2024 12:17:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 23:50:44.975224
- Title: Efficient Model Compression for Hierarchical Federated Learning
- Title(参考訳): 階層型フェデレーション学習のための効率的なモデル圧縮
- Authors: Xi Zhu, Songcan Yu, Junbo Wang, Qinglin Yang,
- Abstract要約: フェデレートラーニング(FL)は、分散ラーニングシステム内のプライバシを保護する能力のために、大きな注目を集めている。
本稿では,クラスタ化FLとモデル圧縮の利点を統合した新しい階層型FLフレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.37403547348343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL), as an emerging collaborative learning paradigm, has garnered significant attention due to its capacity to preserve privacy within distributed learning systems. In these systems, clients collaboratively train a unified neural network model using their local datasets and share model parameters rather than raw data, enhancing privacy. Predominantly, FL systems are designed for mobile and edge computing environments where training typically occurs over wireless networks. Consequently, as model sizes increase, the conventional FL frameworks increasingly consume substantial communication resources. To address this challenge and improve communication efficiency, this paper introduces a novel hierarchical FL framework that integrates the benefits of clustered FL and model compression. We present an adaptive clustering algorithm that identifies a core client and dynamically organizes clients into clusters. Furthermore, to enhance transmission efficiency, each core client implements a local aggregation with compression (LC aggregation) algorithm after collecting compressed models from other clients within the same cluster. Simulation results affirm that our proposed algorithms not only maintain comparable predictive accuracy but also significantly reduce energy consumption relative to existing FL mechanisms.
- Abstract(参考訳): 新たなコラボレーティブラーニングパラダイムであるフェデレートラーニング(FL)は、分散ラーニングシステム内のプライバシを保護する能力のために、大きな注目を集めている。
これらのシステムでは、クライアントはローカルデータセットを使用して統一ニューラルネットワークモデルを共同でトレーニングし、生データではなくモデルパラメータを共有することにより、プライバシが向上する。
FLシステムは、無線ネットワーク上でトレーニングが行われるモバイルおよびエッジコンピューティング環境向けに設計されている。
その結果、モデルのサイズが大きくなるにつれて、従来のFLフレームワークは、かなりの通信リソースを消費する傾向にある。
この課題に対処し、通信効率を向上させるために、クラスタ化FLとモデル圧縮の利点を統合する新しい階層型FLフレームワークを提案する。
本稿では、コアクライアントを特定し、動的にクライアントをクラスタ化する適応クラスタリングアルゴリズムを提案する。
さらに、送信効率を向上させるため、各コアクライアントは、同じクラスタ内の他のクライアントから圧縮されたモデルを収集した後、圧縮(LCアグリゲーション)アルゴリズムでローカルアグリゲーションを実装する。
シミュレーションの結果,提案アルゴリズムは予測精度を同等に維持するだけでなく,既存のFL機構と比較してエネルギー消費量を大幅に削減することを確認した。
関連論文リスト
- Lightweight Industrial Cohorted Federated Learning for Heterogeneous Assets [0.0]
フェデレーテッド・ラーニング(FL)は、分散機械学習(ML)モデルをトレーニングするための最も広く採用されているコラボレーティブ・ラーニング・アプローチである。
しかし、すべてのFLタスクにおいて、大きなデータ類似性や均質性は認められているため、FLは産業環境では特に設計されていない。
本稿では,コホーティングにモデルパラメータを用いる軽量産業用コホーテッドFL (licFL) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-25T12:48:56Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
フェデレートラーニング(FL)パラダイムでは、パラメータサーバ(PS)がモデル収集、更新アグリゲーション、複数のラウンドでのモデル分散のために、分散参加クライアントと同時通信する。
FLの圧縮には可変長が有用であることを示す。
本稿では,Fed-CVLC(Federated Learning Compression with Variable-Length Codes)を提案する。
論文 参考訳(メタデータ) (2024-02-06T07:25:21Z) - Communication-Efficient Federated Learning through Adaptive Weight
Clustering and Server-Side Distillation [10.541541376305245]
Federated Learning(FL)は、複数のデバイスにわたるディープニューラルネットワークの協調トレーニングのための有望なテクニックである。
FLは、トレーニング中に繰り返しサーバー・クライアント間の通信によって、過剰な通信コストによって妨げられる。
本稿では,動的重みクラスタリングとサーバ側知識蒸留を組み合わせた新しいアプローチであるFedCompressを提案する。
論文 参考訳(メタデータ) (2024-01-25T14:49:15Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
フェデレートラーニング(FL)は、分散クライアントがデータのプライバシを保持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,モデル収束とFLシステム全体の性能を改善するために,CP-CFL(Contrative Pre-training-based Clustered Federated Learning)を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:44:26Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - HiFlash: Communication-Efficient Hierarchical Federated Learning with
Adaptive Staleness Control and Heterogeneity-aware Client-Edge Association [38.99309610943313]
フェデレートラーニング(FL)は、巨大なクライアント間で共有モデルを協調的に学習することのできる、有望なパラダイムである。
多くの既存のFLシステムでは、クライアントは大規模なデータサイズのモデルパラメータを、ワイドエリアネットワーク(WAN)を介してリモートクラウドサーバと頻繁に交換する必要がある。
我々は、モバイルエッジコンピューティングの利点を享受するHiFLの階層的フェデレーション学習パラダイムを活用している。
論文 参考訳(メタデータ) (2023-01-16T14:39:04Z) - Comfetch: Federated Learning of Large Networks on Constrained Clients
via Sketching [28.990067638230254]
フェデレートラーニング(FL)は、エッジ上でのプライベートおよびコラボレーティブモデルトレーニングの一般的なパラダイムである。
我々は,グローバルニューラルネットワークの表現を用いて,クライアントが大規模ネットワークをトレーニングできる新しいアルゴリズムであるComdirectionalを提案する。
論文 参考訳(メタデータ) (2021-09-17T04:48:42Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。