Multi-qubit Lattice Surgery Scheduling
- URL: http://arxiv.org/abs/2405.17688v2
- Date: Mon, 10 Jun 2024 21:01:18 GMT
- Title: Multi-qubit Lattice Surgery Scheduling
- Authors: Allyson Silva, Xiangyi Zhang, Zak Webb, Mia Kramer, Chan Woo Yang, Xiao Liu, Jessica Lemieux, Ka-Wai Chen, Artur Scherer, Pooya Ronagh,
- Abstract summary: A quantum circuit can be transpiled into a sequence of solely non-Clifford multi-qubit gates.
We show that the transpilation significantly reduces the circuit length on the set of circuits tested.
The resulting circuit of multi-qubit gates has a further reduction in the expected circuit execution time compared to serial execution.
- Score: 3.7126786554865774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault-tolerant quantum computation using two-dimensional topological quantum error correcting codes can benefit from multi-qubit long-range operations. By using simple commutation rules, a quantum circuit can be transpiled into a sequence of solely non-Clifford multi-qubit gates. Prior work on fault-tolerant compilation avoids optimal scheduling of such gates since they reduce the parallelizability of the circuit. We observe that the reduced parallelization potential is outweighed by the significant reduction in the number of gates. We therefore devise a method for scheduling multi-qubit lattice surgery using an earliest-available-first policy, solving the associated forest packing problem using a representation of the multi-qubit gates as Steiner trees. Our extensive testing on random and application-inspired circuits demonstrates the method's scalability and performance. We show that the transpilation significantly reduces the circuit length on the set of circuits tested, and that the resulting circuit of multi-qubit gates has a further reduction in the expected circuit execution time compared to serial execution.
Related papers
- Optimization Driven Quantum Circuit Reduction [20.697821016522358]
We propose three different transpilation approaches to substantially reduce circuit lengths without affecting functionality.
The first variant is based on a search scheme, and the other variants are driven by a database retrieval scheme and a machine learning based decision support.
We show that our proposed methods generate short quantum circuits for restricted gate sets, superior to the typical results obtained by using different qiskit optimization levels.
arXiv Detail & Related papers (2025-02-20T16:41:10Z) - Efficient compilation of quantum circuits using multi-qubit gates [0.0]
We present a compilation scheme which implements a general-circuit decomposition to a sequence of Ising-type, long-range, multi-qubit entangling gates.
We numerically test our compilation and show that, compared to conventional realizations with two-qubit gates, our compilations improves the logarithm of quantum volume by $20%$ to $25%$.
arXiv Detail & Related papers (2025-01-28T19:08:13Z) - Efficient Circuit Wire Cutting Based on Commuting Groups [8.60732674633629]
Current quantum devices face challenges when dealing with large circuits due to error rates as circuit size and the number of qubits increase.
circuit wire-cutting technique addresses this issue by breaking down a large circuit into smaller, more manageable subcircuits.
Inspired by ancilla-assisted quantum process tomography and the MUBs-based grouping technique for simultaneous measurement, we propose a new approach that can reduce subcircuit running overhead.
arXiv Detail & Related papers (2024-10-27T02:40:00Z) - On the Constant Depth Implementation of Pauli Exponentials [49.48516314472825]
We decompose arbitrary exponentials into circuits of constant depth using $mathcalO(n)$ ancillae and two-body XX and ZZ interactions.
We prove the correctness of our approach, after introducing novel rewrite rules for circuits which benefit from qubit recycling.
arXiv Detail & Related papers (2024-08-15T17:09:08Z) - A multiple-circuit approach to quantum resource reduction with application to the quantum lattice Boltzmann method [39.671915199737846]
We introduce a multiple-circuit algorithm for a quantum lattice Boltzmann method (QLBM) solve of the incompressible Navier--Stokes equations.
The presented method is validated and demonstrated for 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Efficient quantum gate decomposition via adaptive circuit compression [0.0]
The utilization of parametric two-qubit gates in the circuit design allows us to transform the discrete problem of circuit synthesis into an optimization problem over continuous variables.
We implemented the algorithm in the SQUANDER software package and benchmarked it against several state-of-the-art quantum gate synthesis tools.
arXiv Detail & Related papers (2022-03-08T22:29:31Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.