Reducing Mid-Circuit Measurements via Probabilistic Circuits
- URL: http://arxiv.org/abs/2405.13747v1
- Date: Wed, 22 May 2024 15:33:19 GMT
- Title: Reducing Mid-Circuit Measurements via Probabilistic Circuits
- Authors: Yanbin Chen, Innocenzo Fulginiti, Christian B. Mendl,
- Abstract summary: Mid-circuit measurements and measurement-controlled gates are supported by an increasing number of quantum hardware platforms.
This work presents a static circuit optimization that can substitute some of these measurements with an equivalent circuit with randomized gate applications.
- Score: 0.13108652488669736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mid-circuit measurements and measurement-controlled gates are supported by an increasing number of quantum hardware platforms and will become more relevant as an essential building block for quantum error correction. However, mid-circuit measurements impose significant demands on the quantum hardware due to the required signal analysis and classical feedback loop. This work presents a static circuit optimization algorithm that can substitute some of these measurements with an equivalent circuit with randomized gate applications. Our method uses ideas from constant propagation to classically precompute measurement outcome probabilities. Our proposed optimization is efficient, as its runtime scales polynomially on the number of qubits and gates of the circuit.
Related papers
- Quantum Error Mitigation via Linear-Depth Verifier Circuits [0.044998333629984864]
We provide a method for constructing verifier circuits for any quantum circuit that is accurately represented by a low-dimensional matrix product operator (MPO)
By transpiling the circuits to a 2D array of qubits, we estimate the crossover point where the verifier circuit is shallower than the circuit itself, and hence useful for quantum error mitigation (QEM)
We conclude that our approach may be useful for calibrating quantum sub-circuits to counter coherent noise but cannot correct for the incoherent noise present in current devices.
arXiv Detail & Related papers (2024-11-05T16:44:18Z) - Nonadiabatic geometric quantum gates with on-demand trajectories [2.5539863252714636]
We propose a general protocol for constructing geometric quantum gates with on-demand trajectories.
Our scheme adopts reverse engineering of the target Hamiltonian using smooth pulses.
Because a particular geometric gate can be induced by various different trajectories, we can further optimize the gate performance.
arXiv Detail & Related papers (2024-01-20T06:57:36Z) - Mapping quantum circuits to shallow-depth measurement patterns based on
graph states [0.0]
We create a hybrid simulation technique for measurement-based quantum computing.
We show that groups of fully commuting operators can be implemented using fully-parallel, i.e., non-adaptive, measurements.
We discuss how such circuits can be implemented in constant quantum depths by employing quantum teleportation.
arXiv Detail & Related papers (2023-11-27T19:00:00Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit connectivity boosts by quantum-classical-quantum interfaces [0.4194295877935867]
High-connectivity circuits are a major roadblock for current quantum hardware.
We propose a hybrid classical-quantum algorithm to simulate such circuits without swap-gate ladders.
We numerically show the efficacy of our method for a Bell-state circuit for two increasingly distant qubits.
arXiv Detail & Related papers (2022-03-09T19:00:02Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Capacity and quantum geometry of parametrized quantum circuits [0.0]
Parametrized quantum circuits can be effectively implemented on current devices.
We evaluate the capacity and trainability of these circuits using the geometric structure of the parameter space.
Our results enhance the understanding of parametrized quantum circuits for improving variational quantum algorithms.
arXiv Detail & Related papers (2021-02-02T18:16:57Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.