論文の概要: MindFormer: A Transformer Architecture for Multi-Subject Brain Decoding via fMRI
- arxiv url: http://arxiv.org/abs/2405.17720v1
- Date: Tue, 28 May 2024 00:36:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 22:51:42.261716
- Title: MindFormer: A Transformer Architecture for Multi-Subject Brain Decoding via fMRI
- Title(参考訳): MindFormer:fMRIによるマルチオブジェクト脳デコーディングのためのトランスフォーマアーキテクチャ
- Authors: Inhwa Han, Jaayeon Lee, Jong Chul Ye,
- Abstract要約: 我々は、fMRI条件の特徴ベクトルを生成するためにMindFormerと呼ばれる新しいトランスフォーマーアーキテクチャを導入する。
MindFormerは,1)fMRI信号から意味論的に意味のある特徴を抽出するIP-Adapterに基づく新しいトレーニング戦略,2)fMRI信号の個人差を効果的に捉える主観的トークンと線形層である。
- 参考スコア(独自算出の注目度): 50.55024115943266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research efforts to understand neural signals have been ongoing for many years, with visual decoding from fMRI signals attracting considerable attention. Particularly, the advent of image diffusion models has advanced the reconstruction of images from fMRI data significantly. However, existing approaches often introduce inter- and intra- subject variations in the reconstructed images, which can compromise accuracy. To address current limitations in multi-subject brain decoding, we introduce a new Transformer architecture called MindFormer. This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model. More specifically, MindFormer incorporates two key innovations: 1) a novel training strategy based on the IP-Adapter to extract semantically meaningful features from fMRI signals, and 2) a subject specific token and linear layer that effectively capture individual differences in fMRI signals while synergistically combines multi subject fMRI data for training. Our experimental results demonstrate that Stable Diffusion, when integrated with MindFormer, produces semantically consistent images across different subjects. This capability significantly surpasses existing models in multi-subject brain decoding. Such advancements not only improve the accuracy of our reconstructions but also deepen our understanding of neural processing variations among individuals.
- Abstract(参考訳): 神経信号を理解するための研究は長年続けられており、fMRI信号からの視覚的復号が注目されている。
特に、画像拡散モデルの出現により、fMRIデータからの画像の再構成が大幅に進んだ。
しかし、既存の手法では、再構成された画像に被写体間と被写体間の違いを導入し、精度を損なうことがある。
マルチオブジェクト脳デコーディングにおける現在の限界に対処するために,MindFormerと呼ばれる新しいトランスフォーマーアーキテクチャを導入する。
このモデルは、安定拡散モデルの条件付けに使用できるfMRI条件の特徴ベクトルを生成するように設計されている。
より具体的に言えば、MindFormerは2つの重要なイノベーションを取り入れている。
1)fMRI信号から意味的に意味のある特徴を抽出するIP-Adapterに基づく新しいトレーニング戦略
2 fMRI信号の個人差を効果的に捉えつつ、複数の対象 fMRI データを相乗的に組み合わせた訓練用トークン及び線形層。
実験の結果,MindFormerと統合された安定拡散は,異なる対象に対して意味的に一貫した画像を生成することがわかった。
この機能は、マルチオブジェクト脳復号における既存のモデルを大幅に上回る。
このような進歩は、再建の精度を向上するだけでなく、個人間のニューラル処理のバリエーションの理解を深めます。
関連論文リスト
- LLM4Brain: Training a Large Language Model for Brain Video Understanding [9.294352205183726]
映像刺激によって引き起こされるfMRI信号から視覚的意味情報を再構成するためのLCMに基づく手法を提案する。
我々は、適応器を備えたfMRIエンコーダに微調整技術を用いて、脳の反応を映像刺激に合わせた潜在表現に変換する。
特に,視覚的セマンティック情報と脳反応のアライメントを高めるために,自己教師付きドメイン適応手法を統合する。
論文 参考訳(メタデータ) (2024-09-26T15:57:08Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIPはタスクに依存しないfMRIベースの脳復号モデルである。
脳の活動、画像、およびテキストの間のモダリティギャップを埋める。
BrainCLIPは、高い意味的忠実度で視覚刺激を再構築することができる。
論文 参考訳(メタデータ) (2023-02-25T03:28:54Z) - Mapping individual differences in cortical architecture using multi-view
representation learning [0.0]
本稿では,タスクfMRIと安静状態fMRIで計測されたアクティベーションと接続性に基づく情報を組み合わせて,新しい機械学習手法を提案する。
マルチビューディープ・オートエンコーダは、2つのfMRIモダリティを、患者を特徴づけるスカラースコアを推測するために予測モデルが訓練されたジョイント表現空間に融合させるように設計されている。
論文 参考訳(メタデータ) (2020-04-01T09:01:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。