Benchmarking Skeleton-based Motion Encoder Models for Clinical Applications: Estimating Parkinson's Disease Severity in Walking Sequences
- URL: http://arxiv.org/abs/2405.17817v2
- Date: Thu, 30 May 2024 13:40:23 GMT
- Title: Benchmarking Skeleton-based Motion Encoder Models for Clinical Applications: Estimating Parkinson's Disease Severity in Walking Sequences
- Authors: Vida Adeli, Soroush Mehraban, Irene Ballester, Yasamin Zarghami, Andrea Sabo, Andrea Iaboni, Babak Taati,
- Abstract summary: General human motion encoders trained on large-scale human motion datasets for analyzing gait patterns in PD patients.
We evaluate six pre-trained state-of-the-art human motion encoder models on their ability to predict the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III) gait scores from motion capture data.
- Score: 3.650839294933459
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study investigates the application of general human motion encoders trained on large-scale human motion datasets for analyzing gait patterns in PD patients. Although these models have learned a wealth of human biomechanical knowledge, their effectiveness in analyzing pathological movements, such as parkinsonian gait, has yet to be fully validated. We propose a comparative framework and evaluate six pre-trained state-of-the-art human motion encoder models on their ability to predict the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III) gait scores from motion capture data. We compare these against a traditional gait feature-based predictive model in a recently released large public PD dataset, including PD patients on and off medication. The feature-based model currently shows higher weighted average accuracy, precision, recall, and F1-score. Motion encoder models with closely comparable results demonstrate promise for scalability and efficiency in clinical settings. This potential is underscored by the enhanced performance of the encoder model upon fine-tuning on PD training set. Four of the six human motion models examined provided prediction scores that were significantly different between on- and off-medication states. This finding reveals the sensitivity of motion encoder models to nuanced clinical changes. It also underscores the necessity for continued customization of these models to better capture disease-specific features, thereby reducing the reliance on labor-intensive feature engineering. Lastly, we establish a benchmark for the analysis of skeleton-based motion encoder models in clinical settings. To the best of our knowledge, this is the first study to provide a benchmark that enables state-of-the-art models to be tested and compete in a clinical context. Codes and benchmark leaderboard are available at code.
Related papers
- Prediction of Freezing of Gait in Parkinsons Disease using Explainable AI and Federated Deep Learning for Wearable Sensors [0.0]
This study uses an Inertial Measurement Unit (IMU) dataset to develop explainable AI methods for the early detection and prediction of Freezing of Gait (FOG)<n>A Stacking Ensemble model achieves superior performance, surpassing a hybrid bidirectional GRU model and reaching nearly 99% classification accuracy.<n>The proposed FOG prediction framework incorporates federated learning, where models are trained locally on individual devices and aggregated on a central server.
arXiv Detail & Related papers (2025-07-01T01:22:12Z) - Beyond Sensor Data: Foundation Models of Behavioral Data from Wearables Improve Health Predictions [5.608192262118104]
We develop foundation models of behavioral signals using over 2.5B hours of wearable data from 162K individuals.<n>Our model shows strong performance across diverse real-world applications including individual-level classification and time-varying health state prediction.
arXiv Detail & Related papers (2025-06-30T19:01:00Z) - Zero-shot Medical Event Prediction Using a Generative Pre-trained Transformer on Electronic Health Records [8.575985305475355]
We show that a foundation model trained on EHRs can perform predictive tasks in a zero-shot manner.
Unlike supervised approaches requiring extensive labeled data, our method enables the model to forecast a next medical event purely from a pretraining knowledge.
arXiv Detail & Related papers (2025-03-07T19:26:47Z) - Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability.
A 5-minute prediction window was chosen for timely intervention, with minute-levels standardizing the data.
This study highlights ML's potential to improve triage and reduce alarm fatigue.
arXiv Detail & Related papers (2024-10-30T23:24:28Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Predicting Multi-Joint Kinematics of the Upper Limb from EMG Signals
Across Varied Loads with a Physics-Informed Neural Network [0.0]
The PINN model is constructed by combining a feed-forward Artificial Neural Network (ANN) with a joint torque model.
The training dataset for the PINN model comprises EMG and time data collected from four different subjects.
The results demonstrated strong correlations of 58% to 83% in joint angle prediction.
arXiv Detail & Related papers (2023-11-28T16:55:11Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
We propose several deep learning models using the same features as the SAPS II score.
Several experiments have been conducted based on the well known clinical dataset Medical Information Mart for Intensive Care III.
arXiv Detail & Related papers (2020-12-11T16:27:04Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
We present a temporal deep learning model to perform bidirectional representation learning on EHR sequences to predict depression.
The model generated the highest increases of precision-recall area under the curve (PRAUC) from 0.70 to 0.76 in depression prediction compared to the best baseline model.
arXiv Detail & Related papers (2020-09-26T17:56:37Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.