Relational Self-supervised Distillation with Compact Descriptors for Image Copy Detection
- URL: http://arxiv.org/abs/2405.17928v5
- Date: Sat, 09 Nov 2024 16:02:12 GMT
- Title: Relational Self-supervised Distillation with Compact Descriptors for Image Copy Detection
- Authors: Juntae Kim, Sungwon Woo, Jongho Nang,
- Abstract summary: We propose a novel method that achieves competitive performance by using a lightweight network and compact descriptors.
We introduce relational self-supervised distillation for flexible representation in a smaller feature space.
For the DISC2021 benchmark, ResNet-50 and EfficientNet-B0 are used as the teacher and student models.
- Score: 4.336779198334904
- License:
- Abstract: Image copy detection is the task of detecting edited copies of any image within a reference database. While previous approaches have shown remarkable progress, the large size of their networks and descriptors remains a disadvantage, complicating their practical application. In this paper, we propose a novel method that achieves competitive performance by using a lightweight network and compact descriptors. By utilizing relational self-supervised distillation to transfer knowledge from a large network to a small network, we enable the training of lightweight networks with smaller descriptor sizes. We introduce relational self-supervised distillation for flexible representation in a smaller feature space and apply contrastive learning with a hard negative loss to prevent dimensional collapse. For the DISC2021 benchmark, ResNet-50 and EfficientNet-B0 are used as the teacher and student models, respectively, with micro average precision improving by 5.0\%/4.9\%/5.9\% for 64/128/256 descriptor sizes compared to the baseline method. The code is available at \href{https://github.com/juntae9926/RDCD}{https://github.com/juntae9926/RDCD}.
Related papers
- Large-to-small Image Resolution Asymmetry in Deep Metric Learning [13.81293627340993]
We explore an asymmetric setup by light-weight processing of the query at a small image resolution to enable fast representation extraction.
The goal is to obtain a network for database examples that is trained to operate on large resolution images and benefits from fine-grained image details.
We conclude that resolution asymmetry is a better way to optimize the performance/efficiency trade-off than architecture asymmetry.
arXiv Detail & Related papers (2022-10-11T14:05:30Z) - Learning-Based Dimensionality Reduction for Computing Compact and
Effective Local Feature Descriptors [101.62384271200169]
A distinctive representation of image patches in form of features is a key component of many computer vision and robotics tasks.
We investigate multi-layer perceptrons (MLPs) to extract low-dimensional but high-quality descriptors.
We consider different applications, including visual localization, patch verification, image matching and retrieval.
arXiv Detail & Related papers (2022-09-27T17:59:04Z) - Correlation Verification for Image Retrieval [15.823918683848877]
We propose a novel image retrieval re-ranking network named Correlation Verification Networks (CVNet)
CVNet compresses dense feature correlation into image similarity while learning diverse geometric matching patterns from various image pairs.
Our proposed network shows state-of-the-art performance on several retrieval benchmarks with a significant margin.
arXiv Detail & Related papers (2022-04-04T13:18:49Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
We investigate and adapt network quantization techniques to accelerate inference and enable its use on compute limited platforms.
ZippyPoint, our efficient quantized network with binary descriptors, improves the network runtime speed, the descriptor matching speed, and the 3D model size.
These improvements come at a minor performance degradation as evaluated on the tasks of homography estimation, visual localization, and map-free visual relocalization.
arXiv Detail & Related papers (2022-03-07T18:59:03Z) - A Self-Supervised Descriptor for Image Copy Detection [13.624995441674642]
We introduce SSCD, a model that builds on a self-supervised contrastive training objective.
We adapt this method to the copy detection task by changing the architecture and training objective.
Our approach relies on an entropy regularization term, promoting consistent separation between descriptor vectors.
arXiv Detail & Related papers (2022-02-21T14:25:32Z) - Deep Structured Instance Graph for Distilling Object Detectors [82.16270736573176]
We present a simple knowledge structure to exploit and encode information inside the detection system to facilitate detector knowledge distillation.
We achieve new state-of-the-art results on the challenging COCO object detection task with diverse student-teacher pairs on both one- and two-stage detectors.
arXiv Detail & Related papers (2021-09-27T08:26:00Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.