Proof of Quality: A Costless Paradigm for Trustless Generative AI Model Inference on Blockchains
- URL: http://arxiv.org/abs/2405.17934v2
- Date: Thu, 30 May 2024 13:26:35 GMT
- Title: Proof of Quality: A Costless Paradigm for Trustless Generative AI Model Inference on Blockchains
- Authors: Zhenjie Zhang, Yuyang Rao, Hao Xiao, Xiaokui Xiao, Yin Yang,
- Abstract summary: Generative AI models have demonstrated powerful and disruptive capabilities in natural language and image tasks.
deploying these models in decentralized environments remains challenging.
We present a new inference paradigm called emphproof of quality (PoQ) to enable the deployment of arbitrarily large generative models on blockchain architecture.
- Score: 24.934767209724335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI models, such as GPT-4 and Stable Diffusion, have demonstrated powerful and disruptive capabilities in natural language and image tasks. However, deploying these models in decentralized environments remains challenging. Unlike traditional centralized deployment, systematically guaranteeing the integrity of AI model services in fully decentralized environments, particularly on trustless blockchains, is both crucial and difficult. In this paper, we present a new inference paradigm called \emph{proof of quality} (PoQ) to enable the deployment of arbitrarily large generative models on blockchain architecture. Unlike traditional approaches based on validating inference procedures, such as ZKML or OPML, our PoQ paradigm focuses on the outcome quality of model inference. Using lightweight BERT-based cross-encoders as our underlying quality evaluation model, we design and implement PQML, the first practical protocol for real-world NLP generative model inference on blockchains, tailored for popular open-source models such as Llama 3 and Mixtral. Our analysis demonstrates that our protocol is robust against adversarial but rational participants in ecosystems, where lazy or dishonest behavior results in fewer benefits compared to well-behaving participants. The computational overhead of validating the quality evaluation is minimal, allowing quality validators to complete the quality check within a second, even using only a CPU. Preliminary simulation results show that PoQ consensus is generated in milliseconds, 1,000 times faster than any existing scheme.
Related papers
- Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
Large language models (LLMs) have achieved significant success, but their vulnerability to adversarial perturbations has raised considerable concerns.
We propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions.
Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility.
arXiv Detail & Related papers (2024-04-18T15:47:00Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
We study the practical implications of outsourcing the orchestration of federated learning to a democratic setting such as in a blockchain.
Using simulation, we evaluate the blockchained FL operation by applying two different ML models on the well-known MNIST and CIFAR-10 datasets.
Our results show the high impact of model inconsistencies on the accuracy of the models (up to a 35% decrease in prediction accuracy)
arXiv Detail & Related papers (2023-10-11T13:18:23Z) - A Model-Based Machine Learning Approach for Assessing the Performance of
Blockchain Applications [0.0]
We use machine learning (ML) model-based methods to predict blockchain performance.
We employ the salp swarm optimization (SO) ML model which enables the investigation of optimal blockchain configurations.
The $k$NN model outperforms SVM by 5% and the ISO also demonstrates a reduction of 4% inaccuracy deviation compared to regular SO.
arXiv Detail & Related papers (2023-09-20T10:39:21Z) - A Distributed Computation Model Based on Federated Learning Integrates
Heterogeneous models and Consortium Blockchain for Solving Time-Varying
Problems [35.69540692050138]
We propose a Distributed Computation Model (DCM) based on the consortium blockchain network to improve the credibility of the overall model.
In the experiments, we verify the efficiency of DCM, where the results show that the proposed model outperforms many state-of-the-art models.
arXiv Detail & Related papers (2023-06-28T08:50:35Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Federated Learning with Quantum Secure Aggregation [23.385315728881295]
The scheme is secure in protecting private model parameters from being disclosed to semi-honest attackers.
The proposed security mechanism ensures that any attempts to eavesdrop private model parameters can be immediately detected and stopped.
arXiv Detail & Related papers (2022-07-09T13:21:36Z) - Covert Model Poisoning Against Federated Learning: Algorithm Design and
Optimization [76.51980153902774]
Federated learning (FL) is vulnerable to external attacks on FL models during parameters transmissions.
In this paper, we propose effective MP algorithms to combat state-of-the-art defensive aggregation mechanisms.
Our experimental results demonstrate that the proposed CMP algorithms are effective and substantially outperform existing attack mechanisms.
arXiv Detail & Related papers (2021-01-28T03:28:18Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
We build dialogue models that are dynamically aware of what utterances or tokens are dull without any feature-engineering.
The first model, MinAvgOut, directly maximizes the diversity score through the output distributions of each batch.
The second model, Label Fine-Tuning (LFT), prepends to the source sequence a label continuously scaled by the diversity score to control the diversity level.
The third model, RL, adopts Reinforcement Learning and treats the diversity score as a reward signal.
arXiv Detail & Related papers (2020-01-15T18:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.