論文の概要: Learning Shared RGB-D Fields: Unified Self-supervised Pre-training for Label-efficient LiDAR-Camera 3D Perception
- arxiv url: http://arxiv.org/abs/2405.17942v2
- Date: Fri, 11 Oct 2024 22:01:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:03:44.282254
- Title: Learning Shared RGB-D Fields: Unified Self-supervised Pre-training for Label-efficient LiDAR-Camera 3D Perception
- Title(参考訳): 共有RGB-Dフィールドの学習:ラベル効率のよいLiDARカメラ3D知覚のための統一自己教師付き事前学習
- Authors: Xiaohao Xu, Ye Li, Tianyi Zhang, Jinrong Yang, Matthew Johnson-Roberson, Xiaonan Huang,
- Abstract要約: 我々は、統合事前訓練戦略、NeRF-Supervised Masked Auto(NS-MAE)を導入する。
NS-MAEは、外観と幾何学の両方を符号化するNeRFの能力を利用して、マルチモーダルデータの効率的なマスク付き再構築を可能にする。
結果: NS-MAE は SOTA 事前学習法よりも優れており,各モードに対して個別の戦略を用いる。
- 参考スコア(独自算出の注目度): 17.11366229887873
- License:
- Abstract: Constructing large-scale labeled datasets for multi-modal perception model training in autonomous driving presents significant challenges. This has motivated the development of self-supervised pretraining strategies. However, existing pretraining methods mainly employ distinct approaches for each modality. In contrast, we focus on LiDAR-Camera 3D perception models and introduce a unified pretraining strategy, NeRF-Supervised Masked Auto Encoder (NS-MAE), which optimizes all modalities through a shared formulation. NS-MAE leverages NeRF's ability to encode both appearance and geometry, enabling efficient masked reconstruction of multi-modal data. Specifically, embeddings are extracted from corrupted LiDAR point clouds and images, conditioned on view directions and locations. Then, these embeddings are rendered into multi-modal feature maps from two crucial viewpoints for 3D driving perception: perspective and bird's-eye views. The original uncorrupted data serve as reconstruction targets for self-supervised learning. Extensive experiments demonstrate the superior transferability of NS-MAE across various 3D perception tasks under different fine-tuning settings. Notably, NS-MAE outperforms prior SOTA pre-training methods that employ separate strategies for each modality in BEV map segmentation under the label-efficient fine-tuning setting. Our code is publicly available at https://github.com/Xiaohao-Xu/Unified-Pretrain-AD/ .
- Abstract(参考訳): 自律運転におけるマルチモーダル知覚モデルトレーニングのための大規模ラベル付きデータセットの構築は、大きな課題である。
これは自己指導型事前訓練戦略の開発を動機付けている。
しかし、既存の事前学習法は主に各モードに対して異なるアプローチを採用している。
対照的に、我々はLiDAR-Camera 3D知覚モデルに注目し、共有定式化により全てのモダリティを最適化する統一事前学習戦略、NeRF-Supervised Masked Auto Encoder (NS-MAE)を導入する。
NS-MAEは、外観と幾何学の両方を符号化するNeRFの能力を活用し、マルチモーダルデータの効率的なマスク付き再構成を可能にする。
具体的には、崩壊したLiDAR点雲と画像から埋め込みを抽出し、ビューの方向と位置で条件付けする。
そして、これらの埋め込みは、視点と鳥の目視という2つの重要な3次元駆動知覚の視点から、マルチモーダルな特徴マップに描画される。
元々の破損したデータは、自己教師付き学習のための再構築ターゲットとして機能する。
広範囲な実験は、異なる微調整条件下での様々な3次元知覚タスクにおけるNS-MAEの優れた伝達性を示す。
特に、NS-MAEは、ラベル効率の良い微調整設定の下で、BEVマップセグメンテーションにおける各モダリティに対して別々の戦略を利用するSOTA事前訓練手法よりも優れている。
私たちのコードはhttps://github.com/Xiaohao-Xu/Unified-Pretrain-AD/で公開されています。
関連論文リスト
- FSD-BEV: Foreground Self-Distillation for Multi-view 3D Object Detection [33.225938984092274]
本稿では,分散の相違を効果的に回避するFSD方式を提案する。
また2つのポイントクラウド拡張(PCI)戦略を設計し、ポイントクラウドの幅を補う。
マルチスケール・フォアグラウンド・エンハンスメント(MSFE)モジュールを開発し,マルチスケール・フォアグラウンドの特徴を抽出・融合する。
論文 参考訳(メタデータ) (2024-07-14T09:39:44Z) - Exploring the Untouched Sweeps for Conflict-Aware 3D Segmentation Pretraining [41.145598142457686]
LiDARカメラによる3D画像の事前学習は、3D知覚タスクと関連する応用に有意な可能性を示唆している。
未探索フレームからLiDAR-画像ペアを精巧に選択するための,ビジョン・ファウンデーション・モデル駆動型サンプル探索モジュールを提案する。
我々の手法は、既存の最先端の事前訓練フレームワークを3つの主要な公道走行データセットで一貫して上回っている。
論文 参考訳(メタデータ) (2024-07-10T08:46:29Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
本稿では,OccNeRF法を用いて,3次元監視なしで占有ネットワークを訓練する手法を提案する。
我々は、再構成された占有領域をパラメータ化し、サンプリング戦略を再編成し、カメラの無限知覚範囲に合わせる。
意味的占有予測のために,事前学習した開語彙2Dセグメンテーションモデルの出力をフィルタリングし,プロンプトを洗練するためのいくつかの戦略を設計する。
論文 参考訳(メタデータ) (2023-12-14T18:58:52Z) - Towards Transferable Multi-modal Perception Representation Learning for
Autonomy: NeRF-Supervised Masked AutoEncoder [1.90365714903665]
本研究では,伝達可能な多モード認識表現学習のための自己教師付き事前学習フレームワークを提案する。
我々は,NeRF-Supervised Masked AutoEncoder (NS-MAE) を用いて学習した表現が,マルチモーダルおよびシングルモーダル(カメラのみ,ライダーのみ)の知覚モデルに対して有望な伝達性を示すことを示す。
この研究が、自律エージェントのためのより一般的なマルチモーダル表現学習の探求を促すことを願っている。
論文 参考訳(メタデータ) (2023-11-23T00:53:11Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
トレーニング-ファインタニングアプローチは、さまざまな下流データセットとタスクをまたいだトレーニング済みのバックボーンを微調整することで、ラベル付けの負担を軽減することができる。
本稿では, 一般表現学習が, 占領予測のタスクを通じて達成できることを, 初めて示す。
本研究は,LiDAR 点の理解を促進するとともに,LiDAR の事前訓練における今後の進歩の道を開くことを目的とする。
論文 参考訳(メタデータ) (2023-09-19T11:13:01Z) - CALICO: Self-Supervised Camera-LiDAR Contrastive Pre-training for BEV
Perception [32.91233926771015]
CALICOは、LiDARとカメラバックボーンの両方に対照的な目的を適用する新しいフレームワークである。
我々のフレームワークは、異なるバックボーンとヘッドに合わせることができ、マルチモーダルなBEV知覚のための有望なアプローチとして位置づけられる。
論文 参考訳(メタデータ) (2023-06-01T05:06:56Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
GAPretrainと呼ばれる新しい幾何学的事前学習フレームワークを提案する。
GAPretrainは、複数の最先端検出器に柔軟に適用可能なプラグアンドプレイソリューションとして機能する。
BEVFormer法を用いて, nuScenes val の 46.2 mAP と 55.5 NDS を実現し, それぞれ 2.7 と 2.1 点を得た。
論文 参考訳(メタデータ) (2023-04-06T14:33:05Z) - Rethinking Range View Representation for LiDAR Segmentation [66.73116059734788]
「多対一」マッピング、意味的不整合、形状変形は、射程射影からの効果的な学習に対する障害となる可能性がある。
RangeFormerは、ネットワークアーキテクチャ、データ拡張、後処理を含む新しい設計を含む、フルサイクルのフレームワークである。
比較対象のLiDARセマンティックスとパノプティックスセグメンテーションのベンチマークにおいて,初めてレンジビュー法が点,ボクセル,マルチビューフュージョンを越えられることを示す。
論文 参考訳(メタデータ) (2023-03-09T16:13:27Z) - BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud
Pre-training in Autonomous Driving Scenarios [51.285561119993105]
自律運転におけるLiDARに基づく3Dオブジェクト検出のための,効率的なマスク付きオートエンコーダ事前学習フレームワークであるBEV-MAEを提案する。
具体的には、3Dエンコーダ学習特徴表現を導くために,鳥の目視(BEV)誘導マスキング戦略を提案する。
学習可能なポイントトークンを導入し、3Dエンコーダの一貫性のある受容的フィールドサイズを維持する。
論文 参考訳(メタデータ) (2022-12-12T08:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。