論文の概要: Hybrid Preference Optimization: Augmenting Direct Preference Optimization with Auxiliary Objectives
- arxiv url: http://arxiv.org/abs/2405.17956v1
- Date: Tue, 28 May 2024 08:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:37:52.903771
- Title: Hybrid Preference Optimization: Augmenting Direct Preference Optimization with Auxiliary Objectives
- Title(参考訳): ハイブリッドな選好最適化:補助的目的による直接選好最適化の強化
- Authors: Anirudhan Badrinath, Prabhat Agarwal, Jiajing Xu,
- Abstract要約: 大規模言語モデル(LLM)を協調するハイブリッドアプローチを提案する。
DPO の暗黙的な報酬分解に対する単純な拡張により、任意の補助報酬の集合を最大化するために LLM をチューニングできる。
提案手法であるHybrid Preference Optimization (HPO) は,ユーザの好みと補助的な設計目的の両方に効果的に一般化できることを示す。
- 参考スコア(独自算出の注目度): 0.5120567378386615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For aligning large language models (LLMs), prior work has leveraged reinforcement learning via human feedback (RLHF) or variations of direct preference optimization (DPO). While DPO offers a simpler framework based on maximum likelihood estimation, it compromises on the ability to tune language models to easily maximize non-differentiable and non-binary objectives according to the LLM designer's preferences (e.g., using simpler language or minimizing specific kinds of harmful content). These may neither align with user preferences nor even be able to be captured tractably by binary preference data. To leverage the simplicity and performance of DPO with the generalizability of RL, we propose a hybrid approach between DPO and RLHF. With a simple augmentation to the implicit reward decomposition of DPO, we allow for tuning LLMs to maximize a set of arbitrary auxiliary rewards using offline RL. The proposed method, Hybrid Preference Optimization (HPO), shows the ability to effectively generalize to both user preferences and auxiliary designer objectives, while preserving alignment performance across a range of challenging benchmarks and model sizes.
- Abstract(参考訳): 大規模言語モデル(LLM)の整合性を確保するため、先行研究は人間フィードバック(RLHF)や直接選好最適化(DPO)による強化学習を活用している。
DPOは、最大推定に基づいてより単純なフレームワークを提供するが、LLM設計者の好みに応じて、言語モデルをチューニングし、非微分可能および非バイナリ目的を容易に最大化する能力に妥協する(例えば、より単純な言語を使用したり、特定の有害なコンテンツを最小化するなど)。
これらは、ユーザの好みと一致せず、バイナリの好みデータによって引き付けられることもない。
本稿では,DPOの簡易性と性能をRLの一般化性に活かすために,DPOとRLHFのハイブリッドアプローチを提案する。
DPOの暗黙的な報酬分解に対する単純な拡張により、LLM をチューニングすることで、オフライン RL を用いて任意の補助報酬の集合を最大化することができる。
提案手法であるHybrid Preference Optimization (HPO) は, ユーザの嗜好と補助的設計目的の両方に効果的に一般化できると同時に, 様々な課題のあるベンチマークやモデルサイズでアライメント性能を保っていることを示す。
関連論文リスト
- Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Token-level Direct Preference Optimization [8.249403373337024]
微調整された事前訓練された大規模言語モデルは、それらを人間の価値観や意図と整合させるのに不可欠である。
トークンレベルでポリシーを最適化することにより,LLMと人間の嗜好を一致させる新しいアプローチである,トークンレベルの直接選好最適化(TDPO)を導入する。
論文 参考訳(メタデータ) (2024-04-18T08:49:38Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
嗜好データから直接ポリシーを最適化するために、直接選好最適化(DPO)が提案された。
問題の最適解に基づいて導出されたDPOが,現実の最適解の妥協平均探索近似に繋がることを示す。
本稿では、アライメント目的の効率的な精度最適化(EXO)を提案する。
論文 参考訳(メタデータ) (2024-02-01T18:51:54Z) - Preference as Reward, Maximum Preference Optimization with Importance Sampling [3.7040071165219595]
我々は、重要サンプリングの観点から、単純で直感的な非政治的選好最適化アルゴリズムを提案し、これを最大選好最適化(MPO)と呼ぶ。
MPOは、RLHFとIPOの目的を、独占的アルゴリズムであると同時に組み合わせることで、両方の世界のベストを達成している。
論文 参考訳(メタデータ) (2023-12-27T06:34:54Z) - Beyond One-Preference-Fits-All Alignment: Multi-Objective Direct
Preference Optimization [78.50294936259026]
我々は、最小限のオーバーヘッドで複数のアライメント目標に対して、MODPO(Multi-Objective Direct Preference Optimization)を提案する。
MODPOは言語モデリングを直接報酬モデリングに折り畳み、全ての目的を特定の重み付けと組み合わせた暗黙的な集団報酬モデル(cRM)としてLMを訓練する。
理論上は MORLHF と同じ最適解を生成することが保証されているが、MODPO は事実上より安定で計算的に効率的である。
論文 参考訳(メタデータ) (2023-10-05T17:35:26Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
提案手法は,リジェクションサンプリングを用いた最適ポリシーからのソース選好データに対する新しいアプローチを提案する。
また、嗜好モデルの観点から、SLiC(Sequence Likelihood)とDPO(Direct Preference Optimization)の両方で使用される損失関数を強化する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-13T01:07:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。