論文の概要: Transformer and Hybrid Deep Learning Based Models for Machine-Generated Text Detection
- arxiv url: http://arxiv.org/abs/2405.17964v1
- Date: Tue, 28 May 2024 08:48:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:28:09.184164
- Title: Transformer and Hybrid Deep Learning Based Models for Machine-Generated Text Detection
- Title(参考訳): 機械生成テキスト検出のための変圧器とハイブリッドディープラーニングモデル
- Authors: Teodor-George Marchitan, Claudiu Creanga, Liviu P. Dinu,
- Abstract要約: 本稿では,SemEval 2024 Task 8: Multigenerator, Multi domain, and Multilingual Black-Box Machine-Generated Text Detectionの取り組みについて述べる。
- 参考スコア(独自算出の注目度): 4.373647283459287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes the approach of the UniBuc - NLP team in tackling the SemEval 2024 Task 8: Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection. We explored transformer-based and hybrid deep learning architectures. For subtask B, our transformer-based model achieved a strong \textbf{second-place} out of $77$ teams with an accuracy of \textbf{86.95\%}, demonstrating the architecture's suitability for this task. However, our models showed overfitting in subtask A which could potentially be fixed with less fine-tunning and increasing maximum sequence length. For subtask C (token-level classification), our hybrid model overfit during training, hindering its ability to detect transitions between human and machine-generated text.
- Abstract(参考訳): 本稿では,SemEval 2024 Task 8: Multigenerator, Multi domain, and Multilingual Black-Box Machine-Generated Text Detectionの取り組みについて述べる。
トランスフォーマーベースおよびハイブリッドディープラーニングアーキテクチャについて検討した。
サブタスクBの場合、我々のトランスフォーマーベースモデルは7,7$のチームのうち7,7$のチームで強力な \textbf{second-place} を達成し、このタスクに対するアーキテクチャの適合性を実証した。
しかし, このモデルでは, 微調整が小さく, 最大配列長が増大する可能性があり, サブタスクAに過剰適合が認められた。
サブタスクC(トークンレベル分類)では、トレーニング中にハイブリッドモデルが過度に適合し、人間と機械生成テキスト間の遷移を検出する能力を妨げます。
関連論文リスト
- AISPACE at SemEval-2024 task 8: A Class-balanced Soft-voting System for Detecting Multi-generator Machine-generated Text [0.0]
SemEval-2024 Task 8は、人書きテキストと機械生成テキストを検出するための課題を提供する。
本稿では,主にSubtask Bを扱うシステムを提案する。
これは、与えられた全文が人間によって書かれたか、あるいは、実際にはマルチクラスのテキスト分類タスクである特定のLarge Language Model (LLM)によって生成されるかを検出することを目的としている。
論文 参考訳(メタデータ) (2024-04-01T06:25:47Z) - AMOM: Adaptive Masking over Masking for Conditional Masked Language
Model [81.55294354206923]
条件付きマスク付き言語モデル(CMLM)は最も汎用性の高いフレームワークの1つである。
本稿では,デコーダの高精細化を実現するため,マスク戦略よりもシンプルで効果的な適応マスキングを提案する。
提案モデルにより,ニューラルマシン翻訳における最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-03-13T20:34:56Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
本稿では,マルチモーダルタスクのためのBERTベースのアーキテクチャであるAdapted Multimodal BERTを提案する。
アダプタはタスクの事前訓練された言語モデルを手動で調整し、融合層はタスク固有の層ワイドな音声視覚情報とテキストBERT表現を融合させる。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
論文 参考訳(メタデータ) (2022-12-01T17:31:42Z) - Learning Multiscale Transformer Models for Sequence Generation [33.73729074207944]
単語境界情報と句レベルの事前知識に基づいて,スケール間の関係を確立することで,マルチスケールトランスフォーマーモデルを構築する。
特に、いくつかのテストセットにおいて、効率を犠牲にすることなく、強いベースラインに対して一貫したパフォーマンス向上を実現した。
論文 参考訳(メタデータ) (2022-06-19T07:28:54Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMERはトランスフォーマーをベースとした事前学習モデルであり、抽出要約のための多粒度スパースアテンションを持つ。
単一文書と複数文書の要約タスクの実験から,HETFORMERがルージュF1の最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-12T22:42:31Z) - Visual Saliency Transformer [127.33678448761599]
RGBとRGB-Dの液状物体検出(SOD)のための、純粋な変圧器であるVST(Visual Saliency Transformer)に基づく新しい統一モデルを開発しました。
イメージパッチを入力として取り、トランスフォーマーを利用してイメージパッチ間のグローバルコンテキストを伝搬する。
実験結果から,RGBとRGB-D SODのベンチマークデータセットにおいて,本モデルが既存の最新結果を上回っていることが示された。
論文 参考訳(メタデータ) (2021-04-25T08:24:06Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Deep Transformers with Latent Depth [42.33955275626127]
Transformerモデルは、多くのシーケンスモデリングタスクにおいて最先端のパフォーマンスを達成した。
本稿では,層選択の後方分布を学習することで,どの層を使うかを自動的に学習する確率的フレームワークを提案する。
多言語機械翻訳のための1つの共有トランスフォーマーネットワークを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-28T07:13:23Z) - Robust Conversational AI with Grounded Text Generation [77.56950706340767]
GTGは、大規模なTransformerニューラルネットワークをバックボーンとして使用するハイブリッドモデルである。
タスク完了のための対話的信念状態と実世界の知識に基づく応答を生成する。
論文 参考訳(メタデータ) (2020-09-07T23:49:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。