論文の概要: Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering
- arxiv url: http://arxiv.org/abs/2405.17980v1
- Date: Tue, 28 May 2024 09:12:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:28:09.156113
- Title: Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering
- Title(参考訳): 言語モデルにおける思考へのピアリング--文脈質問回答における帰属へのアプローチ
- Authors: Anirudh Phukan, Shwetha Somasundaram, Apoorv Saxena, Koustava Goswami, Balaji Vasan Srinivasan,
- Abstract要約: 大規模言語モデル(LLM)の隠れ状態表現を利用した文脈質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
本稿では,LLM世代に対するトークンレベルのアノテーションを文脈質問応答設定に有する属性データセットであるVerifiability-granularを提案する。
- 参考スコア(独自算出の注目度): 9.86691461253151
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the enhancement in the field of generative artificial intelligence (AI), contextual question answering has become extremely relevant. Attributing model generations to the input source document is essential to ensure trustworthiness and reliability. We observe that when large language models (LLMs) are used for contextual question answering, the output answer often consists of text copied verbatim from the input prompt which is linked together with "glue text" generated by the LLM. Motivated by this, we propose that LLMs have an inherent awareness from where the text was copied, likely captured in the hidden states of the LLM. We introduce a novel method for attribution in contextual question answering, leveraging the hidden state representations of LLMs. Our approach bypasses the need for extensive model retraining and retrieval model overhead, offering granular attributions and preserving the quality of generated answers. Our experimental results demonstrate that our method performs on par or better than GPT-4 at identifying verbatim copied segments in LLM generations and in attributing these segments to their source. Importantly, our method shows robust performance across various LLM architectures, highlighting its broad applicability. Additionally, we present Verifiability-granular, an attribution dataset which has token level annotations for LLM generations in the contextual question answering setup.
- Abstract(参考訳): 生成人工知能(AI)分野の強化に伴い、文脈質問応答は非常に重要になっている。
信頼性と信頼性を確保するためには、入力元文書にモデル世代を帰属させることが不可欠である。
大規模言語モデル (LLM) を文脈的質問応答に使用する場合, LLM が生成した "glue text" とリンクした入力プロンプトからテキストをコピーした冗長なテキストを出力する。
そこで本研究では,LLMのテキストがコピーされた場所から,LLMの隠れた状態に捕らわれている可能性が示唆された。
本稿では,LLMの隠れ状態表現を利用した文脈的質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
実験の結果,本手法は,LPM世代における冗長なコピーセグメントの同定と,これらのセグメントのソースへの寄与において,GPT-4よりも同等以上の性能を示すことが示された。
重要なことに,本手法は多種多様なLLMアーキテクチャにまたがるロバストな性能を示し,その適用性を強調している。
さらに,LLM世代に対するトークンレベルのアノテーションを持つ属性データセットであるVerifiability-granularを提案する。
関連論文リスト
- Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - LLM Attributor: Interactive Visual Attribution for LLM Generation [29.116016627864095]
Pythonライブラリは、大規模な言語モデルのデータ属性をトレーニングするためのインタラクティブな視覚化を提供する。
我々のライブラリは、LCMのテキスト生成をデータポイントのトレーニングに素早く対応させる新しい方法を提供する。
論文 参考訳(メタデータ) (2024-04-01T13:16:34Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Blinded by Generated Contexts: How Language Models Merge Generated and Retrieved Contexts When Knowledge Conflicts? [45.233517779029334]
応答が生成されたコンテキストと検索されたコンテキストに関連付けられているかどうかを識別する。
実験では、誤った情報を提供する場合でも、生成されたコンテキストを優先する複数のLSMにおいて、重大なバイアスが示される。
論文 参考訳(メタデータ) (2024-01-22T12:54:04Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Enhancing In-Context Learning with Answer Feedback for Multi-Span
Question Answering [9.158919909909146]
本稿では,LLMが望ましくない出力を通知するなど,ラベル付きデータを活用する新しい手法を提案する。
3つのマルチスパン質問応答データセットとキーフレーズ抽出データセットの実験により、我々の新しいプロンプト戦略はLLMの文脈内学習性能を一貫して改善することを示した。
論文 参考訳(メタデータ) (2023-06-07T15:20:24Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。