論文の概要: Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop
- arxiv url: http://arxiv.org/abs/2405.17998v1
- Date: Tue, 28 May 2024 09:34:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:18:23.836790
- Title: Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop
- Title(参考訳): Source Echo Chamber: ユーザ、データ、リコメンダシステムのフィードバックループにおけるソースバイアスのエスカレーションを探る
- Authors: Yuqi Zhou, Sunhao Dai, Liang Pang, Gang Wang, Zhenhua Dong, Jun Xu, Ji-Rong Wen,
- Abstract要約: 本稿では,ソースバイアスがレコメンデーションシステムの領域に与える影響について検討する。
ソースバイアスの頻度を示し、ソースバイアスを増幅した潜在的デジタルエコーチャンバーを明らかにする。
我々は,HGCとAIGCの両方に対してモデル不均一性を維持するブラックボックスデバイアス法を導入する。
- 参考スコア(独自算出の注目度): 65.23044868332693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, researchers have uncovered that neural retrieval models prefer AI-generated content (AIGC), called source bias. Compared to active search behavior, recommendation represents another important means of information acquisition, where users are more prone to source bias. Furthermore, delving into the recommendation scenario, as AIGC becomes integrated within the feedback loop involving users, data, and the recommender system, it progressively contaminates the candidate items, the user interaction history, and ultimately, the data used to train the recommendation models. How and to what extent the source bias affects the neural recommendation models within feedback loop remains unknown. In this study, we extend the investigation of source bias into the realm of recommender systems, specifically examining its impact across different phases of the feedback loop. We conceptualize the progression of AIGC integration into the recommendation content ecosystem in three distinct phases-HGC dominate, HGC-AIGC coexist, and AIGC dominance-each representing past, present, and future states, respectively. Through extensive experiments across three datasets from diverse domains, we demonstrate the prevalence of source bias and reveal a potential digital echo chamber with source bias amplification throughout the feedback loop. This trend risks creating a recommender ecosystem with limited information source, such as AIGC, being disproportionately recommended. To counteract this bias and prevent its escalation in the feedback loop, we introduce a black-box debiasing method that maintains model impartiality towards both HGC and AIGC. Our experimental results validate the effectiveness of the proposed debiasing method, confirming its potential to disrupt the feedback loop.
- Abstract(参考訳): 近年、ニューラル検索モデルがAIGC(source bias)というAI生成コンテンツを好むことが発見されている。
アクティブな検索行動と比較して、リコメンデーションは、ユーザがソースバイアスを受ける傾向にある情報取得の別の重要な手段である。
さらに、AIGCがユーザ、データ、レコメンダシステムを含むフィードバックループに統合されるにつれて、候補項目、ユーザインタラクション履歴、最終的にはレコメンデーションモデルをトレーニングするために使用されるデータを徐々に汚染する。
フィードバックループ内のニューラルレコメンデーションモデルにソースバイアスがどのように影響するかは、まだ不明である。
本研究では,フィードバックループの異なる位相にまたがる影響について検討する。
我々は,AIGCの推奨コンテンツエコシステムへの統合の進展を,HGCが支配する3つの相,HGC-AIGCが共存する相,AIGCが支配する過去,現在,未来状態の3つの相で概念化する。
多様な領域からの3つのデータセットにわたる広範な実験を通じて、ソースバイアスの頻度を実証し、フィードバックループ全体を通してソースバイアスを増幅した潜在的なデジタルエコーチャンバーを明らかにする。
この傾向は、AIGCのような限られた情報ソースが不均等に推奨される推奨エコシステムを作成するリスクがある。
このバイアスに対処し、フィードバックループにおけるエスカレーションを防止するため、HGCとAIGCの両方に対するモデル不均一性を維持するブラックボックスデバイアス法を導入する。
提案手法の有効性を実験的に検証し,フィードバックループの破壊の可能性を確認した。
関連論文リスト
- Debiased Recommendation with Noisy Feedback [41.38490962524047]
収集データ中のMNARとOMEから予測モデルの非バイアス学習に対する交差点脅威について検討する。
まず, OME-EIB, OME-IPS, OME-DR推定器を設計する。
論文 参考訳(メタデータ) (2024-06-24T23:42:18Z) - Causal Distillation for Alleviating Performance Heterogeneity in Recommender Systems [142.3424649008479]
歴史的相互作用の不均一な分布とレコメンダモデルのバイアス付きトレーニングを示す。
デバイアスドトレーニングの鍵は、ユーザの過去の行動と次の行動の両方に影響を与える共同創設者の影響を取り除くことである。
本稿では,非保守的共同設立者に対応するために,因果多教師蒸留フレームワーク(CausalD)を提案する。
論文 参考訳(メタデータ) (2024-05-31T05:31:00Z) - Managing multi-facet bias in collaborative filtering recommender systems [0.0]
アイテムグループ間のバイアスドレコメンデーションは、システムに対するユーザの不満を引き起こすとともに、アイテムプロバイダの利益を脅かす可能性がある。
本研究の目的は,最先端の協調フィルタリング推薦アルゴリズムの出力における地理的起源と人気に関する新たなタイプの交叉バイアスを管理することである。
2つの実世界の映画と書籍のデータセットに関する大規模な実験は、アイテムの生産大陸に富んだものであり、提案アルゴリズムが精度と上記のバイアスの両タイプの間に合理的なバランスをとっていることを示している。
論文 参考訳(メタデータ) (2023-02-21T10:06:01Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - Deep Causal Reasoning for Recommendations [47.83224399498504]
推薦システム研究の新たなトレンドは、共同創設者の影響を因果的観点から否定することである。
提案手法は多因性マルチアウトカム(MCMO)推論問題としてモデル化する。
MCMOモデリングは,高次元因果空間に付随する観測が不十分なため,高いばらつきをもたらす可能性があることを示す。
論文 参考訳(メタデータ) (2022-01-06T15:00:01Z) - Correcting the User Feedback-Loop Bias for Recommendation Systems [34.44834423714441]
本稿では,レコメンデーションシステムにおいて,ユーザのフィードバックループバイアスを修正するための系統的かつ動的手法を提案する。
本手法は,各ユーザの動的評価履歴の埋め込みを学習するためのディープラーニングコンポーネントを含む。
実世界のレコメンデーションシステムにおけるユーザフィードバックループバイアスの存在を実証的に検証した。
論文 参考訳(メタデータ) (2021-09-13T15:02:55Z) - Contrastive Learning for Debiased Candidate Generation in Large-Scale
Recommender Systems [84.3996727203154]
コントラスト損失の一般的な選択は、逆確率重み付けによる露光バイアスの低減と等価であることを示す。
我々はCLRecをさらに改良し、マルチCLRecを提案する。
提案手法は,少なくとも4ヶ月のオンラインA/Bテストとオフライン分析が実施され,大幅に改善されている。
論文 参考訳(メタデータ) (2020-05-20T08:15:23Z) - Modeling and Counteracting Exposure Bias in Recommender Systems [0.0]
本研究では,行列因数分解など,広く用いられている推奨戦略に固有のバイアスについて検討する。
本稿では,リコメンデータシステムのための新しいデバイアス対策を提案する。
その結果,レコメンダシステムにはバイアスがあり,ユーザの事前の露出に依存していることがわかった。
論文 参考訳(メタデータ) (2020-01-01T00:12:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。