論文の概要: Correcting the User Feedback-Loop Bias for Recommendation Systems
- arxiv url: http://arxiv.org/abs/2109.06037v1
- Date: Mon, 13 Sep 2021 15:02:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 15:11:36.837049
- Title: Correcting the User Feedback-Loop Bias for Recommendation Systems
- Title(参考訳): レコメンデーションシステムにおけるユーザのフィードバックループバイアスの補正
- Authors: Weishen Pan, Sen Cui, Hongyi Wen, Kun Chen, Changshui Zhang, Fei Wang
- Abstract要約: 本稿では,レコメンデーションシステムにおいて,ユーザのフィードバックループバイアスを修正するための系統的かつ動的手法を提案する。
本手法は,各ユーザの動的評価履歴の埋め込みを学習するためのディープラーニングコンポーネントを含む。
実世界のレコメンデーションシステムにおけるユーザフィードバックループバイアスの存在を実証的に検証した。
- 参考スコア(独自算出の注目度): 34.44834423714441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selection bias is prevalent in the data for training and evaluating
recommendation systems with explicit feedback. For example, users tend to rate
items they like. However, when rating an item concerning a specific user, most
of the recommendation algorithms tend to rely too much on his/her rating
(feedback) history. This introduces implicit bias on the recommendation system,
which is referred to as user feedback-loop bias in this paper. We propose a
systematic and dynamic way to correct such bias and to obtain more diverse and
objective recommendations by utilizing temporal rating information.
Specifically, our method includes a deep-learning component to learn each
user's dynamic rating history embedding for the estimation of the probability
distribution of the items that the user rates sequentially. These estimated
dynamic exposure probabilities are then used as propensity scores to train an
inverse-propensity-scoring (IPS) rating predictor. We empirically validated the
existence of such user feedback-loop bias in real world recommendation systems
and compared the performance of our method with the baseline models that are
either without de-biasing or with propensity scores estimated by other methods.
The results show the superiority of our approach.
- Abstract(参考訳): 選択バイアスは、明示的なフィードバックによるレコメンデーションシステムのトレーニングと評価のためのデータで一般的である。
例えば、ユーザーは好きなアイテムを評価しがちだ。
しかしながら、特定のユーザに関する項目を評価する場合、推奨アルゴリズムのほとんどは、その評価(フィードバック)履歴に大きく依存する傾向があります。
本稿では,ユーザのフィードバックループバイアスと呼ばれるレコメンデーションシステムにおいて,暗黙のバイアスを導入する。
本稿では,これらのバイアスを体系的かつダイナミックに修正し,時間的評価情報を利用してより多様で客観的な推薦を得る手法を提案する。
具体的には,ユーザが逐次評価する項目の確率分布を推定するために,各ユーザの動的評価履歴の埋め込みを学習するためのディープラーニングコンポーネントを含む。
これらの推定されたダイナミック露光確率は、逆正当性スコア(IPS)評価予測器をトレーニングするための正当性スコアとして使用される。
実世界のレコメンデーションシステムにおけるそのようなユーザフィードバックループバイアスの存在を実証的に検証し、デバイアスのないベースラインモデルと、他の手法で推定された確率スコアとを比較した。
結果は我々のアプローチの優位性を示している。
関連論文リスト
- Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
人気アイテムの小さなセットが、高い相互作用率のために推奨結果を支配している。
この現象は、ニッチな興味のある人を無視しながら、メインストリームの趣味を持つユーザーに不当に利益をもたらす。
本稿では,推薦モデルのトレーニングプロセスに介入することで,この問題に対処するプロセス内アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-07T08:34:18Z) - Treatment Effect Estimation for User Interest Exploration on Recommender Systems [10.05609996672672]
本稿では,トップN推薦を処理最適化問題とみなすUpliftモデルに基づくRecommenderフレームワークを提案する。
UpliftRecは、観察ユーザフィードバックを用いて、異なるカテゴリの露出比で、クリックスルーレート(CTR)という治療効果を推定する。
UpliftRecはグループレベルの治療効果を計算し、高いCTR報酬でユーザの隠れた関心を発見する。
論文 参考訳(メタデータ) (2024-05-14T13:22:33Z) - Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
ユーザインタラクションデータとレコメンダシステム(RS)の2つの典型的なバイアスは、人気バイアスと肯定バイアスである。
項目と評価値の双方に影響される多因子選択バイアスについて検討する。
分散を低減し、最適化の堅牢性を向上させるため、スムースで交互に勾配降下する手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T12:18:21Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
アドホック検索では、評価は暗黙のフィードバックを含むユーザーの行動に大きく依存する。
アノテータの会話知覚におけるターン評価におけるユーザフィードバックの役割はほとんど研究されていない。
本稿では,タスク指向対話システム(TDS)の評価が,ターンのフォローアップ発話を通じて提供されるユーザフィードバック,明示的あるいは暗黙的な評価にどのように影響するかに注目した。
論文 参考訳(メタデータ) (2024-04-19T16:45:50Z) - Unbiased Learning to Rank with Biased Continuous Feedback [5.561943356123711]
雑音フィードバックに基づいて相対関係を正確にモデル化するために,非バイアス学習 to ランク(LTR)アルゴリズムを検証した。
パーソナライズされた高品質なレコメンデーション結果を提供するために、レコメンダシステムはカテゴリと継続的なバイアスフィードバックの両方をモデルにする必要があります。
位置バイアス、信頼バイアス、ユーザ関係を明確に区別するために、ペアワイズ信頼バイアスを導入します。
Tencent Newsの公開ベンチマークデータセットと大規模レコメンデータシステムの内部ライブトラフィックの実験結果は、連続ラベルに対して優れた結果を示している。
論文 参考訳(メタデータ) (2023-03-08T02:14:08Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
アルゴリズムをランク付けする偏見のない学習は、候補をアピールし、既に単一の分類ラベルを持つ多くのアプリケーションに適用されている。
本稿では,この課題に対処するための新しい非バイアス付きLTRアルゴリズムを提案する。
パブリックベンチマークデータセットと内部ライブトラフィックを用いた実験結果から,分類ラベルと連続ラベルのいずれにおいても提案手法の優れた結果が得られた。
論文 参考訳(メタデータ) (2021-11-25T06:04:59Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Measuring Recommender System Effects with Simulated Users [19.09065424910035]
人気バイアスとフィルターバブルは、最もよく研究されているシステムバイアスの2つです。
各種ユーザ行動下におけるレコメンダーシステムの影響を測定するためのシミュレーションフレームワークを提供します。
論文 参考訳(メタデータ) (2021-01-12T14:51:11Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。