論文の概要: MULi-Ev: Maintaining Unperturbed LiDAR-Event Calibration
- arxiv url: http://arxiv.org/abs/2405.18021v1
- Date: Tue, 28 May 2024 10:09:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:18:23.811379
- Title: MULi-Ev: Maintaining Unperturbed LiDAR-Event Calibration
- Title(参考訳): MULi-Ev: 未成熟のLiDARイベントキャリブレーションを維持する
- Authors: Mathieu Cocheteux, Julien Moreau, Franck Davoine,
- Abstract要約: MULi-Evは、LiDARによるイベントカメラの外部キャリブレーションに適した、初めてのオンラインディープラーニングベースのフレームワークである。
MULi-Evは校正精度を大幅に改善し、LiDARとイベントカメラをモバイルプラットフォームに統合するための新しい標準を設定している。
われわれはMULi-Evが自律運転におけるイベントベース認識システムの安全性、信頼性、全体的な性能を高める可能性を明らかにした。
- 参考スコア(独自算出の注目度): 4.683612295430957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the increasing interest in enhancing perception systems for autonomous vehicles, the online calibration between event cameras and LiDAR - two sensors pivotal in capturing comprehensive environmental information - remains unexplored. We introduce MULi-Ev, the first online, deep learning-based framework tailored for the extrinsic calibration of event cameras with LiDAR. This advancement is instrumental for the seamless integration of LiDAR and event cameras, enabling dynamic, real-time calibration adjustments that are essential for maintaining optimal sensor alignment amidst varying operational conditions. Rigorously evaluated against the real-world scenarios presented in the DSEC dataset, MULi-Ev not only achieves substantial improvements in calibration accuracy but also sets a new standard for integrating LiDAR with event cameras in mobile platforms. Our findings reveal the potential of MULi-Ev to bolster the safety, reliability, and overall performance of event-based perception systems in autonomous driving, marking a significant step forward in their real-world deployment and effectiveness.
- Abstract(参考訳): 自動運転車の認識システム向上への関心が高まっているにもかかわらず、イベントカメラとLiDARのオンライン校正は、包括的な環境情報の収集に重要な2つのセンサーである。
MULi-Evは、LiDARによるイベントカメラの外部キャリブレーションに適した、初めてのオンラインディープラーニングベースのフレームワークである。
この進歩はLiDARとイベントカメラのシームレスな統合に役立ち、様々な運用条件下で最適なセンサーアライメントを維持するのに不可欠な動的リアルタイムキャリブレーション調整を可能にする。
DSECデータセットで提示された現実シナリオに対して厳格に評価されているMULi-Evは、キャリブレーション精度を大幅に向上するだけでなく、モバイルプラットフォームにおけるイベントカメラとLiDARを統合するための新しい標準も設定している。
われわれはMULi-Evが、自動運転におけるイベントベースの認識システムの安全性、信頼性、全体的な性能を向上する可能性を明らかにした。
関連論文リスト
- Galibr: Targetless LiDAR-Camera Extrinsic Calibration Method via Ground Plane Initialization [13.409482818102878]
Galibrは完全に自動化されたLiDARカメラの外付けキャリブレーションツールで、どんな自然環境でも地上の車両プラットフォーム用に設計されている。
この方法は、LiDARとカメラの入力の両方から地上平面とエッジ情報を利用して、キャリブレーションプロセスの合理化を行う。
提案手法はキャリブレーション性能を著しく向上させるが,これは新しい初期ポーズ推定法に起因している。
論文 参考訳(メタデータ) (2024-06-14T08:25:10Z) - From Chaos to Calibration: A Geometric Mutual Information Approach to
Target-Free Camera LiDAR Extrinsic Calibration [4.378156825150505]
そこで本研究では,根拠となる真理学習データを必要としない目標外キャリブレーションアルゴリズムを提案する。
我々は,KITTI と KITTI-360 の魚眼データセットを用いた改良を行った。
論文 参考訳(メタデータ) (2023-11-03T13:30:31Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Continuous Online Extrinsic Calibration of Fisheye Camera and LiDAR [7.906477322731106]
高レベルの知覚機能を必要とする共通空間参照フレームにカメラとLiDARデータを融合するためには、正確な外部キャリブレーションが必要である。
連続的なオンライン外部キャリブレーションアルゴリズムは、センサーデータのみを使用して、車両の寿命中にカメラ-LiDARキャリブレーションの値を自動更新することができる。
本稿では,一般的な単眼深度推定ネットワークによって提供されるカメラ画像の深度推定と,外部キャリブレーションの最適化指標としてLiDAR点雲の幾何距離の相互情報を用いることを提案する。
論文 参考訳(メタデータ) (2023-06-22T23:16:31Z) - LCE-Calib: Automatic LiDAR-Frame/Event Camera Extrinsic Calibration With
A Globally Optimal Solution [10.117923901732743]
LiDARとカメラの組み合わせにより、移動ロボットはマルチモーダルデータで環境を知覚することができる。
従来のフレームカメラは照明条件の変更に敏感で、新しいイベントカメラの導入を動機付けています。
本稿では,LiDARとフレーム/イベントカメラの外部特性をキャリブレーションするためのチェッカーボードによる自動手法を提案する。
論文 参考訳(メタデータ) (2023-03-17T08:07:56Z) - Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular
Depth Estimation by Integrating IMU Motion Dynamics [74.1720528573331]
教師なし単眼深度と自我運動推定は近年広く研究されている。
我々は、視覚情報とIMUモーションダイナミクスを統合した新しいスケールアウェアフレームワークDynaDepthを提案する。
我々は、KITTIおよびMake3Dデータセット上で広範囲な実験とシミュレーションを行うことにより、DynaDepthの有効性を検証する。
論文 参考訳(メタデータ) (2022-07-11T07:50:22Z) - Lasers to Events: Automatic Extrinsic Calibration of Lidars and Event
Cameras [67.84498757689776]
本稿では,イベントカメラとライダーの直接校正法について述べる。
フレームベースのカメラインターミディエートおよび/または高精度の手測定への依存を除去する。
論文 参考訳(メタデータ) (2022-07-03T11:05:45Z) - LIF-Seg: LiDAR and Camera Image Fusion for 3D LiDAR Semantic
Segmentation [78.74202673902303]
本稿では,LiDAR分割のための粗大なLiDARとカメラフュージョンベースネットワーク(LIF-Seg)を提案する。
提案手法は,画像の文脈情報を完全に活用し,単純だが効果的な早期融合戦略を導入する。
これら2つのコンポーネントの協力により、効果的なカメラ-LiDAR融合が成功する。
論文 参考訳(メタデータ) (2021-08-17T08:53:11Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - LIBRE: The Multiple 3D LiDAR Dataset [54.25307983677663]
We present LIBRE: LiDAR Benchmarking and Reference, a first-of-in-kind dataset with 10 different LiDAR sensor。
LIBREは、現在利用可能なLiDARを公平に比較するための手段を提供するために、研究コミュニティに貢献する。
また、既存の自動運転車やロボティクス関連のソフトウェアの改善も促進する。
論文 参考訳(メタデータ) (2020-03-13T06:17:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。