Context is Important in Depressive Language: A Study of the Interaction Between the Sentiments and Linguistic Markers in Reddit Discussions
- URL: http://arxiv.org/abs/2405.18061v2
- Date: Wed, 3 Jul 2024 18:51:53 GMT
- Title: Context is Important in Depressive Language: A Study of the Interaction Between the Sentiments and Linguistic Markers in Reddit Discussions
- Authors: Neha Sharma, Kairit Sirts,
- Abstract summary: This study investigates the impact of discussion topic as context on linguistic markers and emotional expression in depression.
Our sentiment analysis revealed a broader range of emotional intensity in depressed individuals, with both higher negative and positive sentiments than controls.
- Score: 2.6571678272335717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research exploring linguistic markers in individuals with depression has demonstrated that language usage can serve as an indicator of mental health. This study investigates the impact of discussion topic as context on linguistic markers and emotional expression in depression, using a Reddit dataset to explore interaction effects. Contrary to common findings, our sentiment analysis revealed a broader range of emotional intensity in depressed individuals, with both higher negative and positive sentiments than controls. This pattern was driven by posts containing no emotion words, revealing the limitations of the lexicon based approaches in capturing the full emotional context. We observed several interesting results demonstrating the importance of contextual analyses. For instance, the use of 1st person singular pronouns and words related to anger and sadness correlated with increased positive sentiments, whereas a higher rate of present-focused words was associated with more negative sentiments. Our findings highlight the importance of discussion contexts while interpreting the language used in depression, revealing that the emotional intensity and meaning of linguistic markers can vary based on the topic of discussion.
Related papers
- Emotion Granularity from Text: An Aggregate-Level Indicator of Mental Health [25.166884750592175]
In psychology, variation in the ability of individuals to differentiate between emotion concepts is called emotion granularity.
High emotion granularity has been linked with better mental and physical health.
Low emotion granularity has been linked with maladaptive emotion regulation strategies and poor health outcomes.
arXiv Detail & Related papers (2024-03-04T18:12:10Z) - Language-based Valence and Arousal Expressions between the United States and China: a Cross-Cultural Examination [6.122854363918857]
This paper explores cultural differences in affective expressions by comparing Twitter/X (geolocated to the US) and Sina Weibo (in Mainland China)
Using the NRC-VAD lexicon to measure valence and arousal, we identify distinct patterns of emotional expression across both platforms.
We uncover significant cross-cultural differences in arousal, with US users displaying higher emotional intensity than Chinese users.
arXiv Detail & Related papers (2024-01-10T16:32:25Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
We propose a Dynamic Causal Disentanglement Model based on hidden variable separation.
This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions.
Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables.
arXiv Detail & Related papers (2023-09-13T12:58:09Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
We propose a novel formulation that measures the relative difference between the speech samples of different emotions.
We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework.
At run-time, we control the model to produce the desired emotion mixture by manually defining an emotion attribute vector.
arXiv Detail & Related papers (2022-08-11T15:45:58Z) - "splink" is happy and "phrouth" is scary: Emotion Intensity Analysis for
Nonsense Words [15.425333719115262]
We conduct a best-worst scaling crowdsourcing study in which participants assign intensity scores for joy, sadness, anger, disgust, fear, and surprise to 272 non-sense words.
We develop character-level and phonology-based intensity regressors and evaluate them on real and nonsense words.
The data analysis reveals that some phonetic patterns show clear differences between emotion intensities.
arXiv Detail & Related papers (2022-02-24T14:48:43Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
Emotional voice conversion (EVC) seeks to convert the emotional state of an utterance while preserving the linguistic content and speaker identity.
In this paper, we aim to explicitly characterize and control the intensity of emotion.
We propose to disentangle the speaker style from linguistic content and encode the speaker style into a style embedding in a continuous space that forms the prototype of emotion embedding.
arXiv Detail & Related papers (2022-01-10T02:11:25Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
We compare and identify cognitive aspects on deep neural-based visual lip-reading models.
We observe a strong correlation between these theories in cognitive psychology and our unique modeling.
arXiv Detail & Related papers (2021-10-13T05:30:50Z) - Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes [50.569762345799354]
We argue that two issues must be tackled at the same time: (i) identifying which word is the cause for the other's emotion from his or her utterance and (ii) reflecting those specific words in the response generation.
Taking inspiration from social cognition, we leverage a generative estimator to infer emotion cause words from utterances with no word-level label.
arXiv Detail & Related papers (2021-09-18T04:22:49Z) - An Exploratory Analysis of the Relation Between Offensive Language and
Mental Health [3.333967282951668]
We train computational models to compare the use of offensive language in social media posts written by groups of individuals with and without self-reported depression diagnosis.
Our analysis indicates that offensive language is more frequently used in the samples written by individuals with self-reported depression as well as individuals showing signs of depression.
arXiv Detail & Related papers (2021-05-31T11:25:07Z) - Affective Conditioning on Hierarchical Networks applied to Depression
Detection from Transcribed Clinical Interviews [0.0]
Depression is a mental disorder that impacts not only the subject's mood but also the use of language.
We use a Hierarchical Attention Network to classify interviews of depressed subjects.
We augment the attention layer of our model with a conditioning mechanism on linguistic features, extracted from affective lexica.
arXiv Detail & Related papers (2020-06-04T20:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.