Decoding Linguistic Nuances in Mental Health Text Classification Using Expressive Narrative Stories
- URL: http://arxiv.org/abs/2412.16302v1
- Date: Fri, 20 Dec 2024 19:29:21 GMT
- Title: Decoding Linguistic Nuances in Mental Health Text Classification Using Expressive Narrative Stories
- Authors: Jinwen Tang, Qiming Guo, Yunxin Zhao, Yi Shang,
- Abstract summary: This study bridges the gap by focusing on Expressive Narrative Stories (ENS) from individuals with and without self-declared depression.
Our research evaluates the utility of advanced language models, BERT and MentalBERT, against traditional models.
BERT exhibited minimal sensitivity to the absence of topic words in ENS, suggesting its superior capability to understand deeper linguistic features.
- Score: 5.091061468748012
- License:
- Abstract: Recent advancements in NLP have spurred significant interest in analyzing social media text data for identifying linguistic features indicative of mental health issues. However, the domain of Expressive Narrative Stories (ENS)-deeply personal and emotionally charged narratives that offer rich psychological insights-remains underexplored. This study bridges this gap by utilizing a dataset sourced from Reddit, focusing on ENS from individuals with and without self-declared depression. Our research evaluates the utility of advanced language models, BERT and MentalBERT, against traditional models. We find that traditional models are sensitive to the absence of explicit topic-related words, which could risk their potential to extend applications to ENS that lack clear mental health terminology. Despite MentalBERT is design to better handle psychiatric contexts, it demonstrated a dependency on specific topic words for classification accuracy, raising concerns about its application when explicit mental health terms are sparse (P-value<0.05). In contrast, BERT exhibited minimal sensitivity to the absence of topic words in ENS, suggesting its superior capability to understand deeper linguistic features, making it more effective for real-world applications. Both BERT and MentalBERT excel at recognizing linguistic nuances and maintaining classification accuracy even when narrative order is disrupted. This resilience is statistically significant, with sentence shuffling showing substantial impacts on model performance (P-value<0.05), especially evident in ENS comparisons between individuals with and without mental health declarations. These findings underscore the importance of exploring ENS for deeper insights into mental health-related narratives, advocating for a nuanced approach to mental health text analysis that moves beyond mere keyword detection.
Related papers
- LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Context is Important in Depressive Language: A Study of the Interaction Between the Sentiments and Linguistic Markers in Reddit Discussions [2.6571678272335717]
This study investigates the impact of discussion topic as context on linguistic markers and emotional expression in depression.
Our sentiment analysis revealed a broader range of emotional intensity in depressed individuals, with both higher negative and positive sentiments than controls.
arXiv Detail & Related papers (2024-05-28T11:19:39Z) - Your Model Is Not Predicting Depression Well And That Is Why: A Case
Study of PRIMATE Dataset [0.0]
This paper addresses the quality of annotations in mental health datasets used for NLP-based depression level estimation from social media texts.
Our study reveals concerns regarding annotation validity, particularly for the lack of interest or pleasure symptom.
Our refined annotations, to be released under a Data Use Agreement, offer a higher-quality test set for anhedonia detection.
arXiv Detail & Related papers (2024-03-01T10:47:02Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Reliability Analysis of Psychological Concept Extraction and
Classification in User-penned Text [9.26840677406494]
We use the LoST dataset to capture nuanced textual cues that suggest the presence of low self-esteem in the posts of Reddit users.
Our findings suggest the need of shifting the focus of PLMs from Trigger and Consequences to a more comprehensive explanation.
arXiv Detail & Related papers (2024-01-12T17:19:14Z) - Mental Health Diagnosis in the Digital Age: Harnessing Sentiment
Analysis on Social Media Platforms upon Ultra-Sparse Feature Content [3.6195994708545016]
We propose a novel semantic feature preprocessing technique with a three-folded structure.
With enhanced semantic features, we train a machine learning model to predict and classify mental disorders.
Our methods, when compared to seven benchmark models, demonstrate significant performance improvements.
arXiv Detail & Related papers (2023-11-09T00:15:06Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - A Simple and Flexible Modeling for Mental Disorder Detection by Learning
from Clinical Questionnaires [0.2580765958706853]
We propose a novel approach that captures the semantic meanings directly from the text and compares them to symptom-related descriptions.
Our detailed analysis shows that the proposed model is effective at leveraging domain knowledge, transferable to other mental disorders, and providing interpretable detection results.
arXiv Detail & Related papers (2023-06-05T15:23:55Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
We propose an explainable geometric deep network dubbed NeuroExplainer.
NeuroExplainer is used to uncover altered infant cortical development patterns associated with preterm birth.
arXiv Detail & Related papers (2023-01-01T12:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.