論文の概要: An adaptive transfer learning perspective on classification in non-stationary environments
- arxiv url: http://arxiv.org/abs/2405.18091v1
- Date: Tue, 28 May 2024 11:57:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 18:48:53.624473
- Title: An adaptive transfer learning perspective on classification in non-stationary environments
- Title(参考訳): 非定常環境における適応的移動学習の視点からの分類
- Authors: Henry W J Reeve,
- Abstract要約: 非定常ラベルシフトを伴う半教師付き分類問題を考える。
本研究では,適応的伝達学習の統計的手法に基づく代替手法について検討する。
それぞれのテスト時間におけるテストエラーに縛られた高い確率的後悔を確立し、限界ラベル確率の未知のダイナミクスに自動的に適応する。
- 参考スコア(独自算出の注目度): 3.5897534810405403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a semi-supervised classification problem with non-stationary label-shift in which we observe a labelled data set followed by a sequence of unlabelled covariate vectors in which the marginal probabilities of the class labels may change over time. Our objective is to predict the corresponding class-label for each covariate vector, without ever observing the ground-truth labels, beyond the initial labelled data set. Previous work has demonstrated the potential of sophisticated variants of online gradient descent to perform competitively with the optimal dynamic strategy (Bai et al. 2022). In this work we explore an alternative approach grounded in statistical methods for adaptive transfer learning. We demonstrate the merits of this alternative methodology by establishing a high-probability regret bound on the test error at any given individual test-time, which adapt automatically to the unknown dynamics of the marginal label probabilities. Further more, we give bounds on the average dynamic regret which match the average guarantees of the online learning perspective for any given time interval.
- Abstract(参考訳): 非定常ラベルシフトを伴う半教師付き分類問題として、ラベル付きデータセットと、クラスラベルの限界確率が時間とともに変化するような非ラベル付き共変ベクトルの列について考察する。
本研究の目的は,各共変量ベクトルに対する対応するクラスラベルを,初期ラベル付きデータセットを超えて観測することなく予測することである。
これまでの研究は、最適動的戦略(Bai et al 2022)と競争力のあるオンライン勾配勾配勾配の高度な変種の可能性を示してきた。
本研究では,適応的伝達学習の統計的手法に基づく代替手法について検討する。
本手法の利点は,各テスト時間におけるテストエラーに縛られた高い確率的後悔を確定し,限界ラベル確率の未知のダイナミクスに自動的に適応させることによって示される。
さらに、任意の時間間隔におけるオンライン学習視点の平均的保証と一致する平均的動的後悔に限界を与える。
関連論文リスト
- AllMatch: Exploiting All Unlabeled Data for Semi-Supervised Learning [5.0823084858349485]
提案するSSLアルゴリズムであるAllMatchは,擬似ラベル精度の向上とラベルなしデータの100%利用率の向上を実現する。
その結果、AllMatchは既存の最先端メソッドよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-06-22T06:59:52Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
補完ラベル学習は、弱教師付き学習問題である。
均一分布仮定に依存しない一貫したアプローチを提案する。
相補的なラベル学習は、負のラベル付きバイナリ分類問題の集合として表現できる。
論文 参考訳(メタデータ) (2023-11-27T02:59:17Z) - Adapting to Online Label Shift with Provable Guarantees [137.89382409682233]
オンラインラベルシフトの問題を定式化し,検討する。
非定常性と監督の欠如は、この問題に取り組むことを困難にしている。
我々のアルゴリズムは最適な動的後悔を享受しており、性能が透かしの性質と競合していることを示している。
論文 参考訳(メタデータ) (2022-07-05T15:43:14Z) - Uncertainty-aware Mean Teacher for Source-free Unsupervised Domain
Adaptive 3D Object Detection [6.345037597566315]
擬似ラベルに基づく自己学習アプローチは、ソースフリーな教師なしドメイン適応の一般的な方法である。
本研究では,学習中に誤字を暗黙的にフィルタリングする不確実性認識型平均教師フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-29T18:17:09Z) - Multi-class Probabilistic Bounds for Self-learning [13.875239300089861]
Pseudo-labelingはエラーを起こしやすいため、ラベルなしのトレーニングデータにノイズのあるラベルを追加するリスクがある。
本稿では,多クラス分類シナリオにおける自己学習を部分的にラベル付きデータで分析する確率的枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-29T13:57:37Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
本稿では,局所的なワンホット分類とグローバルなマルチクラス分類を組み合わせることで,視覚的・時間的整合性を両立させる。
3つの大規模ReIDデータセットの実験結果は、教師なしと教師なしの両方のドメイン適応型ReIDタスクにおいて提案手法の優位性を示す。
論文 参考訳(メタデータ) (2020-07-21T14:31:27Z) - Probabilistic Decoupling of Labels in Classification [4.865747672937677]
非標準分類タスクに対する原則的,確率的,統一的なアプローチを開発する。
ラベル分布を予測するために、与えられたラベルの分類器を訓練する。
次に、ラベルクラス遷移のモデルを変動的に最適化することで、基礎となるクラス分布を推定する。
論文 参考訳(メタデータ) (2020-06-16T10:07:50Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。