論文の概要: LLM experiments with simulation: Large Language Model Multi-Agent System for Process Simulation Parametrization in Digital Twins
- arxiv url: http://arxiv.org/abs/2405.18092v1
- Date: Tue, 28 May 2024 11:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 18:48:53.621662
- Title: LLM experiments with simulation: Large Language Model Multi-Agent System for Process Simulation Parametrization in Digital Twins
- Title(参考訳): シミュレーションを用いたLLM実験:デジタル双生児におけるプロセスシミュレーションパラメトリゼーションのための大規模言語モデルマルチエージェントシステム
- Authors: Yuchen Xia, Daniel Dittler, Nasser Jazdi, Haonan Chen, Michael Weyrich,
- Abstract要約: 本稿では,観察,推論,決定,要約の4種類のエージェントを含むマルチエージェントフレームワークを提案する。
開発したシステムは,シミュレーションのパラメトリゼーションと推論を用いて,シミュレーションを制御し,目的を達成するためのパラメータのセットを決定する。
- 参考スコア(独自算出の注目度): 4.773175285216063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel design of a multi-agent system framework that applies a large language model (LLM) to automate the parametrization of process simulations in digital twins. We propose a multi-agent framework that includes four types of agents: observation, reasoning, decision and summarization. By enabling dynamic interaction between LLM agents and simulation model, the developed system can automatically explore the parametrization of the simulation and use heuristic reasoning to determine a set of parameters to control the simulation to achieve an objective. The proposed approach enhances the simulation model by infusing it with heuristics from LLM and enables autonomous search for feasible parametrization to solve a user task. Furthermore, the system has the potential to increase user-friendliness and reduce the cognitive load on human users by assisting in complex decision-making processes. The effectiveness and functionality of the system are demonstrated through a case study, and the visualized demos are available at a GitHub Repository: https://github.com/YuchenXia/LLMDrivenSimulation
- Abstract(参考訳): 本稿では,デジタル双生児におけるプロセスシミュレーションのパラメトリゼーションを自動化するために,大規模言語モデル(LLM)を適用したマルチエージェントシステムフレームワークの設計を提案する。
本稿では,観察,推論,決定,要約の4種類のエージェントを含むマルチエージェントフレームワークを提案する。
LLMエージェントとシミュレーションモデルとの動的相互作用を可能にすることにより,シミュレーションのパラメトリゼーションを自動的に探索し,ヒューリスティック推論を用いてシミュレーションを制御し,目的を達成するためのパラメータセットを決定する。
提案手法は, LLMからヒューリスティックスを注入することでシミュレーションモデルを強化し, ユーザタスクを解くために, 実現可能なパラメトリゼーションの自律探索を可能にする。
さらに、複雑な意思決定プロセスを支援することにより、ユーザのフレンドリさを高め、人間の認知負荷を低減することができる。
システムの有効性と機能はケーススタディを通じて実証され、視覚化されたデモはGitHub Repositoryで見ることができる。
関連論文リスト
- SimBench: A Rule-Based Multi-Turn Interaction Benchmark for Evaluating an LLM's Ability to Generate Digital Twins [8.244444633880603]
シムベンチ(SimBench)は、学生大言語モデル(S-LLM)のデジタルツイン(DT)生成能力を評価するためのベンチマークである。
S-LLMのコレクションを与えられたこのベンチマークは、高品質なDTを生成する能力に基づいて、S-LLMのランク付けを可能にする。
論文 参考訳(メタデータ) (2024-08-21T20:52:32Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
大規模マルチモーダルモデル(LMM)は、人工知能の新たな時代を迎え、言語と視覚の融合によって、高い能力を持つVisual Foundation Agentを形成する。
既存のベンチマークでは、複雑な実世界の環境でのLMMの可能性を十分に証明できない。
VisualAgentBench (VAB) は、視覚基礎エージェントとしてLMMを訓練し評価するための先駆的なベンチマークである。
論文 参考訳(メタデータ) (2024-08-12T17:44:17Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
本稿では,視覚的特徴を大規模多モードモデルの語彙上の確率分布にマッピングする視覚トークンの概念を提案する。
さらに、LMM内の意味空間における視覚的特徴の分布と、視覚情報を表現するためにテキスト埋め込みを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2024-03-12T14:58:52Z) - Large Multi-Modal Models (LMMs) as Universal Foundation Models for
AI-Native Wireless Systems [57.41621687431203]
大規模言語モデル (LLM) と基礎モデルは6Gシステムのゲームチェンジャーとして最近注目されている。
本稿では,人工知能(AI)ネイティブネットワークの展開に適したユニバーサルファンデーションモデルを設計するための包括的ビジョンを提案する。
論文 参考訳(メタデータ) (2024-01-30T00:21:41Z) - Data driven modeling for self-similar dynamics [1.0790314700764785]
本稿では,自己相似性を先行知識として組み込んだマルチスケールニューラルネットワークフレームワークを提案する。
決定論的ダイナミクスの場合、我々のフレームワークは力学が自己相似かどうかを識別できる。
本手法は,自己相似システムにおける電力法指数を同定する。
論文 参考訳(メタデータ) (2023-10-12T12:39:08Z) - Identifying Simulation Model Through Alternative Techniques for a
Medical Device Assembly Process [0.0]
本稿では,シミュレーションモデルの同定と近似のための2つの異なるアプローチについて検討する。
私たちのゴールは、スナッププロセスを正確に表現し、多様なシナリオに対応できる適応可能なモデルを作ることです。
論文 参考訳(メタデータ) (2023-09-26T17:40:29Z) - GPT-Based Models Meet Simulation: How to Efficiently Use Large-Scale
Pre-Trained Language Models Across Simulation Tasks [0.0]
本稿では,科学シミュレーションにおける大規模事前学習言語モデルの利用に関する最初の研究である。
最初の課題は参加者の関与を促進する概念モデルの構造を説明することである。
第2のタスクはシミュレーション出力の要約に重点を置いており、モデルユーザーが望ましいシナリオを識別できるようにしている。
第3の課題は、シミュレーションの可視化の洞察をテキストで伝えることによって、シミュレーションプラットフォームへのアクセシビリティの拡大を目指している。
論文 参考訳(メタデータ) (2023-06-21T15:42:36Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
本稿では,ユーザガイド応答最適化 (UGRO) という代替手法を提案し,タスク指向の対話モデルと組み合わせる。
このアプローチでは、アノテーションのないユーザシミュレータとしてLLMを使用して対話応答を評価し、より小型のエンドツーエンドTODモデルと組み合わせる。
提案手法は従来のSOTA(State-of-the-art)よりも優れている。
論文 参考訳(メタデータ) (2023-06-16T13:04:56Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
本稿では,SAM-RL と呼ばれる感性認識モデルに基づく強化学習システムを提案する。
SAM-RLは、センサーを意識した学習パイプラインによって、ロボットがタスクプロセスを監視するための情報的視点を選択することを可能にする。
我々は,ロボット組立,ツール操作,変形可能なオブジェクト操作という3つの操作タスクを達成するための実世界の実験に,我々のフレームワークを適用した。
論文 参考訳(メタデータ) (2022-10-27T05:30:43Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
本稿では、逐次階層型潜在変数モデルであるリレーショナル状態空間モデル(R-SSM)を紹介する。
R-SSMはグラフニューラルネットワーク(GNN)を用いて、複数の相関オブジェクトの結合状態遷移をシミュレートする。
R-SSMの実用性は、合成および実時間時系列データセットで実証的に評価される。
論文 参考訳(メタデータ) (2020-01-13T03:45:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。