Calibrating Multimodal Learning
- URL: http://arxiv.org/abs/2306.01265v1
- Date: Fri, 2 Jun 2023 04:29:57 GMT
- Title: Calibrating Multimodal Learning
- Authors: Huan Ma. Qingyang Zhang, Changqing Zhang, Bingzhe Wu, Huazhu Fu, Joey
Tianyi Zhou, Qinghua Hu
- Abstract summary: We propose a novel regularization technique, i.e., Calibrating Multimodal Learning (CML) regularization, to calibrate the predictive confidence of previous methods.
This technique could be flexibly equipped by existing models and improve the performance in terms of confidence calibration, classification accuracy, and model robustness.
- Score: 94.65232214643436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal machine learning has achieved remarkable progress in a wide range
of scenarios. However, the reliability of multimodal learning remains largely
unexplored. In this paper, through extensive empirical studies, we identify
current multimodal classification methods suffer from unreliable predictive
confidence that tend to rely on partial modalities when estimating confidence.
Specifically, we find that the confidence estimated by current models could
even increase when some modalities are corrupted. To address the issue, we
introduce an intuitive principle for multimodal learning, i.e., the confidence
should not increase when one modality is removed. Accordingly, we propose a
novel regularization technique, i.e., Calibrating Multimodal Learning (CML)
regularization, to calibrate the predictive confidence of previous methods.
This technique could be flexibly equipped by existing models and improve the
performance in terms of confidence calibration, classification accuracy, and
model robustness.
Related papers
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Confidence-aware multi-modality learning for eye disease screening [58.861421804458395]
We propose a novel multi-modality evidential fusion pipeline for eye disease screening.
It provides a measure of confidence for each modality and elegantly integrates the multi-modality information.
Experimental results on both public and internal datasets demonstrate that our model excels in robustness.
arXiv Detail & Related papers (2024-05-28T13:27:30Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.