IM-Context: In-Context Learning for Imbalanced Regression Tasks
- URL: http://arxiv.org/abs/2405.18202v2
- Date: Mon, 28 Oct 2024 15:53:03 GMT
- Title: IM-Context: In-Context Learning for Imbalanced Regression Tasks
- Authors: Ismail Nejjar, Faez Ahmed, Olga Fink,
- Abstract summary: This paper proposes a paradigm shift towards in-context learning as an effective alternative to conventional in-weight learning methods.
In-context learning refers to the ability of a model to condition itself, given a prompt sequence composed of in-context samples.
We study the impact of the prompt sequence on the model performance from both theoretical and empirical perspectives.
- Score: 9.318067144029403
- License:
- Abstract: Regression models often fail to generalize effectively in regions characterized by highly imbalanced label distributions. Previous methods for deep imbalanced regression rely on gradient-based weight updates, which tend to overfit in underrepresented regions. This paper proposes a paradigm shift towards in-context learning as an effective alternative to conventional in-weight learning methods, particularly for addressing imbalanced regression. In-context learning refers to the ability of a model to condition itself, given a prompt sequence composed of in-context samples (input-label pairs) alongside a new query input to generate predictions, without requiring any parameter updates. In this paper, we study the impact of the prompt sequence on the model performance from both theoretical and empirical perspectives. We emphasize the importance of localized context in reducing bias within regions of high imbalance. Empirical evaluations across a variety of real-world datasets demonstrate that in-context learning substantially outperforms existing in-weight learning methods in scenarios with high levels of imbalance.
Related papers
- Toward Understanding In-context vs. In-weight Learning [50.24035812301655]
We identify simplified distributional properties that give rise to the emergence and disappearance of in-context learning.
We then extend the study to a full large language model, showing how fine-tuning on various collections of natural language prompts can elicit similar in-context and in-weight learning behaviour.
arXiv Detail & Related papers (2024-10-30T14:09:00Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Imbalance in Regression Datasets [0.9374652839580183]
We argue that imbalance in regression is an equally important problem which has so far been overlooked.
Due to under- and over-representations in a data set's target distribution, regressors are prone to degenerate to naive models.
arXiv Detail & Related papers (2024-02-19T09:06:26Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Bias-inducing geometries: an exactly solvable data model with fairness
implications [13.690313475721094]
We introduce an exactly solvable high-dimensional model of data imbalance.
We analytically unpack the typical properties of learning models trained in this synthetic framework.
We obtain exact predictions for the observables that are commonly employed for fairness assessment.
arXiv Detail & Related papers (2022-05-31T16:27:57Z) - Self-balanced Learning For Domain Generalization [64.99791119112503]
Domain generalization aims to learn a prediction model on multi-domain source data such that the model can generalize to a target domain with unknown statistics.
Most existing approaches have been developed under the assumption that the source data is well-balanced in terms of both domain and class.
We propose a self-balanced domain generalization framework that adaptively learns the weights of losses to alleviate the bias caused by different distributions of the multi-domain source data.
arXiv Detail & Related papers (2021-08-31T03:17:54Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
Key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.
Recent literature has explored representation learning to achieve this goal.
We develop an algorithm for flexible, scalable and accurate estimation of causal effects.
arXiv Detail & Related papers (2020-10-23T19:06:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.