On the Analysis of Quantum Repeater Chains with Sequential Swaps
- URL: http://arxiv.org/abs/2405.18252v1
- Date: Tue, 28 May 2024 15:03:09 GMT
- Title: On the Analysis of Quantum Repeater Chains with Sequential Swaps
- Authors: Matheus Guedes de Andrade, Emily A. Van Milligen, Leonardo Bacciottini, Aparimit Chandra, Shahrooz Pouryousef, Nitish K. Panigrahy, Gayane Vardoyan, Don Towsley,
- Abstract summary: We evaluate the performance of two-way quantum repeater chains with sequential entanglement swapping.
We consider memory decoherence, gate imperfections, and imperfect link-level entanglement generation.
- Score: 7.885533851646292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We evaluate the performance of two-way quantum repeater chains with sequential entanglement swapping. Within the analysis we consider memory decoherence, gate imperfections, and imperfect link-level entanglement generation. Our main results include closed-form expressions for the average entanglement fidelity of the generated end-to-end entangled states. We generalize previous findings for the one-shot fidelity analysis and study the case where repeater chains serve end-to-end requests continuously. We provide solutions to the continuous request scenario by combining results from quantum information theory and queuing theory. Finally, we apply the formulas obtained to analyze the impacts of hardware parameters, i.e., coherence times and gate fidelity, and distance on the entanglement fidelity and secret key rate of homogeneous quantum repeater chains.
Related papers
- Analytical Performance Estimations for Quantum Repeater Network Scenarios [1.9608333229350179]
Quantum repeater chains will form the backbone of future quantum networks that distribute entanglement between network nodes.
By using Markov chains to model the dynamics in quantum repeater chains, we offer analytical estimations for long-run throughput and on-demand latency.
arXiv Detail & Related papers (2024-07-16T04:41:29Z) - Generalized quantum repeater graph states [1.7635061227370266]
We present a new approach to ensure the loss tolerance of distributing a single ebit.
We demonstrate that our new scheme significantly outperforms the previous work with much flexibility.
These findings offer new insights into the scalability and reliability of loss-tolerant quantum networks.
arXiv Detail & Related papers (2024-07-01T16:21:37Z) - Analysis of Asynchronous Protocols for Entanglement Distribution in Quantum Networks [9.971549076128268]
We explore two minimal asynchronous protocols for entanglement in quantum networks.
A parallel scheme generating entanglement independently at the link level, and a sequential scheme extending entanglement iteratively from one party to the other.
Our findings suggest the sequential scheme's superiority due to comparable performance with the parallel scheme, coupled with simpler implementation.
arXiv Detail & Related papers (2024-05-03T18:04:11Z) - Fidelity decay and error accumulation in quantum volume circuits [0.3562485774739681]
fidelity decays exponentially with both circuit depth and the number of qubits raised to an architecture-dependent power.
We establish a robust linear relationship between fidelity and the heavy output frequency used in Quantum Volume tests to benchmark quantum processors.
arXiv Detail & Related papers (2024-04-17T14:53:26Z) - On noise in swap ASAP repeater chains: exact analytics, distributions and tight approximations [9.32782060570252]
Losses are one of the main bottlenecks for the distribution of entanglement in quantum networks.
We analytically investigate the case of equally-spaced repeaters.
We find exact analytic formulae for all moments of the fidelity up to 25 segments.
arXiv Detail & Related papers (2024-04-10T16:24:51Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - A Dynamical System View of Langevin-Based Non-Convex Sampling [44.002384711340966]
Non- sampling is a key challenge in machine learning, central to non-rate optimization in deep learning as well as to approximate its significance.
Existing guarantees typically only hold for the averaged distances rather than the more desirable last-rate iterates.
We develop a new framework that lifts the above issues by harnessing several tools from the theory systems.
arXiv Detail & Related papers (2022-10-25T09:43:36Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.