論文の概要: CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths
- arxiv url: http://arxiv.org/abs/2405.18267v2
- Date: Fri, 12 Jul 2024 19:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 00:36:09.254524
- Title: CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths
- Title(参考訳): CTを用いた拡散シュレーディンガーブリッジによる脳室分画 : 対象領域の真理を伴わない
- Authors: Reihaneh Teimouri, Marta Kersten-Oertel, Yiming Xiao,
- Abstract要約: クリニカルCTスキャンによる高効率かつ正確な脳室分画は、腹腔鏡下手術のような緊急手術には不可欠である。
我々は,CTセグメント化の真偽を必要とせず,新しい不確実性に留意した心室分画法を導入する。
提案手法では拡散型Schr"odinger Bridgeと残像U-Netを併用し,画像診断とMRI検査を併用した。
- 参考スコア(独自算出の注目度): 0.9720086191214947
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Efficient and accurate brain ventricle segmentation from clinical CT scans is critical for emergency surgeries like ventriculostomy. With the challenges in poor soft tissue contrast and a scarcity of well-annotated databases for clinical brain CTs, we introduce a novel uncertainty-aware ventricle segmentation technique without the need of CT segmentation ground truths by leveraging diffusion-model-based domain adaptation. Specifically, our method employs the diffusion Schr\"odinger Bridge and an attention recurrent residual U-Net to capitalize on unpaired CT and MRI scans to derive automatic CT segmentation from those of the MRIs, which are more accessible. Importantly, we propose an end-to-end, joint training framework of image translation and segmentation tasks, and demonstrate its benefit over training individual tasks separately. By comparing the proposed method against similar setups using two different GAN models for domain adaptation (CycleGAN and CUT), we also reveal the advantage of diffusion models towards improved segmentation and image translation quality. With a Dice score of 0.78$\pm$0.27, our proposed method outperformed the compared methods, including SynSeg-Net, while providing intuitive uncertainty measures to further facilitate quality control of the automatic segmentation outcomes. The implementation of our proposed method is available at: https://github.com/HealthX-Lab/DiffusionSynCTSeg.
- Abstract(参考訳): クリニカルCTスキャンによる高効率かつ正確な脳室分画は、腹腔鏡下手術のような緊急手術には不可欠である。
ソフトティッシュコントラストの低下と, 臨床脳CTの注釈データベースの不足にともなって, 拡散モデルに基づくドメイン適応を生かして, CTセグメンテーションの真理を必要とせず, 新たな不確実性を意識した心室セグメンテーション技術を導入する。
具体的には拡散型Schr\odinger Bridgeとアテンション・リカレントU-Netを併用し,MRIと自動CTセグメンテーションを導出する。
重要なことは、画像翻訳とセグメンテーションタスクのエンドツーエンドで協調的なトレーニングフレームワークを提案し、個別のタスクを個別にトレーニングするよりも、その利点を実証することである。
ドメイン適応のための2つの異なるGANモデル(CycleGAN と CUT)を用いて、類似した設定と比較することにより、拡散モデルの利点をセグメント化と画像翻訳品質の改善に向けて明らかにする。
提案手法はDiceスコア0.78$\pm$0.27で,SynSeg-Netを含む比較手法よりも優れ,自動セグメンテーション結果の品質管理をより容易にするための直感的な不確実性対策を提供する。
提案手法の実装は、https://github.com/HealthX-Lab/DiffusionSynCTSegで利用可能である。
関連論文リスト
- CriDiff: Criss-cross Injection Diffusion Framework via Generative Pre-train for Prostate Segmentation [60.61972883059688]
CridiffはCrisscross Injection Strategy(CIS)とGenerative Pre-train(GP)アプローチによる2段階の機能注入フレームワークである。
CISでは,複数レベルのエッジ特徴と非エッジ特徴を効果的に学習するために,並列コンディショナーを2つ提案した。
GPアプローチは、追加パラメータを追加することなく、画像特徴と拡散モデルとの矛盾を緩和する。
論文 参考訳(メタデータ) (2024-06-20T10:46:50Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
多発性硬化症(Multiple Sclerosis、MS)は、中枢神経系の病変を引き起こす自己免疫性脱髄性疾患である。
今のところ、病変の分断には多要素自動バイオメディカルアプローチが多用されている。
著者らは1つのモダリティ(FLAIR画像)を用いてMS病変を正確に分類する方法を提案する。
論文 参考訳(メタデータ) (2022-01-05T21:37:43Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration [12.861503169117208]
マルチモーダル画像登録は、診断医療画像と画像誘導介入に多くの応用がある。
周術期獲得診断画像を周術期内環境に登録する能力は、周術期内腫瘍ターゲティングを改善する可能性がある。
対象のモダリティ基礎真理を含まないセグメンテーション学習のためのセグメンテーションネットワーク(APA2Seg-Net)に対する解剖学的保護ドメイン適応を提案する。
論文 参考訳(メタデータ) (2021-04-14T18:07:03Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - ARPM-net: A novel CNN-based adversarial method with Markov Random Field
enhancement for prostate and organs at risk segmentation in pelvic CT images [10.011212599949541]
本研究は,CT画像の多臓器セマンティックセマンティックセグメンテーションを改善するために,新しいCNNに基づく対角深層学習法を開発することを目的とする。
MRF(Markov Random Field)拡張ネットワーク (ARPM-net) は, 対向学習方式を実装している。
モデル輪郭の精度はDice similarity coefficient (DSC), Average Hausdorff Distance (AHD), Average Surface Hausdorff Distance (ASHD), relative Volume difference (VD) を用いて測定した。
論文 参考訳(メタデータ) (2020-08-11T02:40:53Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。