論文の概要: NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning
- arxiv url: http://arxiv.org/abs/2405.18278v1
- Date: Tue, 28 May 2024 15:29:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 17:59:58.625356
- Title: NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning
- Title(参考訳): NotPlaNET: 機械学習でPlanet Hunters TESSから偽陽性を取り除く
- Authors: Valentina Tardugno Poleo, Nora Eisner, David W. Hogg,
- Abstract要約: 我々は1次元畳み込みニューラルネットワーク(CNN)を構築し、楕円型バイナリやその他の偽陽性を潜在的な惑星候補から分離する。
我々のモデルは18分野のうち16分野の惑星の100%を保持し、一方は1つの惑星候補(0.3%)、残りのセクターは2つの惑星候補(0.6%)を誤ってフラグ付けする。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentiating between real transit events and false positive signals in photometric time series data is a bottleneck in the identification of transiting exoplanets, particularly long-period planets. This differentiation typically requires visual inspection of a large number of transit-like signals to rule out instrumental and astrophysical false positives that mimic planetary transit signals. We build a one-dimensional convolutional neural network (CNN) to separate eclipsing binaries and other false positives from potential planet candidates, reducing the number of light curves that require human vetting. Our CNN is trained using the TESS light curves that were identified by Planet Hunters citizen scientists as likely containing a transit. We also include the background flux and centroid information. The light curves are visually inspected and labeled by project scientists and are minimally pre-processed, with only normalization and data augmentation taking place before training. The median percentage of contaminants flagged across the test sectors is 18% with a maximum of 37% and a minimum of 10%. Our model keeps 100% of the planets for 16 of the 18 test sectors, while incorrectly flagging one planet candidate (0.3%) for one sector and two (0.6%) for the remaining sector. Our method shows potential to reduce the number of light curves requiring manual vetting by up to a third with minimal misclassification of planet candidates.
- Abstract(参考訳): 光度時系列データにおける実際のトランジット事象と偽陽性信号の区別は、トランジット系外惑星、特に長周期惑星の同定においてボトルネックとなる。
この分化は通常、惑星のトランジット信号を模倣する機器的および天体物理学的な偽陽性を除外するために、多数のトランジットのような信号を視覚的に検査する必要がある。
我々は1次元畳み込みニューラルネットワーク(CNN)を構築し、楕円型バイナリやその他の偽陽性を潜在的な惑星候補から切り離し、人間の拒否を必要とする光曲線の数を減らす。
我々のCNNは、プラネット・ハンターズ(Planet Hunters)の市民科学者が発見したTESS光曲線を使って訓練されています。
背景フラックスやセントロイド情報も含んでいます。
光曲線は、プロジェクト科学者によって視覚的に検査され、ラベル付けされる。
汚染物質の平均的な割合は18%であり、最大で37%、最低で10%である。
我々のモデルは18分野のうち16分野の惑星の100%を保持し、一方は1つの惑星候補(0.3%)、残りのセクターは2つの惑星候補(0.6%)を誤ってフラグ付けする。
提案手法は,惑星候補の誤分類を最小限に抑えながら,手動による検定を必要とする光度曲線を最大3分の1まで減少させる可能性を示唆している。
関連論文リスト
- Learning 3D Perception from Others' Predictions [64.09115694891679]
本研究では,3次元物体検出装置を構築するための新たなシナリオについて検討する。
例えば、自動運転車が新しいエリアに入ると、その領域に最適化された検出器を持つ他の交通参加者から学ぶことができる。
論文 参考訳(メタデータ) (2024-10-03T16:31:28Z) - Panopticon: a novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves [0.0]
我々は,高精度な光度曲線の遷移を検出するための深層学習モデルであるPanopticonを開発した。
シミュレーションされたPLATO光曲線を用いて, 惑星, 楕円形, 背景楕円形のいずれかのピクセルレベルでモデルを訓練した。
このアプローチは、未濾過光度曲線でさえも、地球カタログの25%以上を含む、我々のテスト人口の90%を回復することができる。
論文 参考訳(メタデータ) (2024-09-05T12:21:51Z) - DBNets: A publicly available deep learning tool to measure the masses of
young planets in dusty protoplanetary discs [49.1574468325115]
我々は、原始惑星系円盤から埋め込まれたとされる惑星の質量を素早く推定するDBNetsを開発した。
アウト・オブ・ディストリビューション・データでツールを広範囲にテストしました。
DBNetはトレーニング範囲外において、特定のしきい値以上の不確実性を返す入力を強く識別することができる。
光学的に薄い状態において、約60deg以下の傾斜で観測された円盤にのみ確実に適用することができる。
論文 参考訳(メタデータ) (2024-02-19T19:00:09Z) - One-dimensional Convolutional Neural Networks for Detecting Transiting
Exoplanets [39.58317527488534]
我々は、異なる望遠鏡とサーベイから得られる光曲線のトランジットを検出することができる人工ニューラルネットワークモデルを開発した。
我々は1次元畳み込みニューラルネットワークモデルを訓練し、検証するために、ケプラー望遠鏡(K2)の延長ミッションに期待されるものを模した人工光曲線を作成しました。
論文 参考訳(メタデータ) (2023-12-12T10:56:27Z) - Deep-learning based measurement of planetary radial velocities in the
presence of stellar variability [70.4007464488724]
我々は、HARPS-N Sun-as-a-star Spectraの3年間の恒星RVジッタを低減するためにニューラルネットワークを使用する。
マルチラインCNNは、半振幅0.2m/s、50日間、振幅8.8%、周期0.7%の誤差で惑星を回復することができる。
論文 参考訳(メタデータ) (2023-04-10T18:33:36Z) - Identifying Exoplanets with Deep Learning. V. Improved Light Curve
Classification for TESS Full Frame Image Observations [1.4060799411474627]
本稿では,第1次ミッションと第1次拡張ミッションの全フレーム画像からの光曲線と,Box Least Squaresで検出された周期信号を含むデータセットを提案する。
データセットは、完全な手作業によるレビュープロセスを使用して、Astronet-Triage-v2と呼ばれるニューラルネットワークのトレーニングに使用された。
Astronet-Triage-v2は4140TOIのうち3577をリカバリでき、Astronet-Triageは3349ターゲットを同じ精度でリカバリできる。
論文 参考訳(メタデータ) (2023-01-03T21:58:13Z) - Geometer: Graph Few-Shot Class-Incremental Learning via Prototype
Representation [50.772432242082914]
既存のグラフニューラルネットワークに基づく手法は主に、豊富なラベリングを持つ固定クラス内の未ラベルノードの分類に重点を置いている。
本稿では,この難易度で実用的なグラフ数ショットクラスインクリメンタルラーニング(GFSCIL)問題に着目し,Geometerと呼ばれる新しい手法を提案する。
完全に接続されたニューラルネットワークのクラスを置き換えて再トレーニングする代わりに、Geometerは、最も近いクラスのプロトタイプを見つけることによって、ノードのラベルを予測する。
論文 参考訳(メタデータ) (2022-05-27T13:02:07Z) - Alleviating the transit timing variation bias in transit surveys. I.
RIVERS: Method and detection of a pair of resonant super-Earths around
Kepler-1705 [0.0]
トランジットタイミング変動(TTV)は、トランジットによって観測されるシステムに有用な情報を提供する。
それらはまた、トランジットサーベイで小さな惑星を検出するのを防ぐ検出バイアスとして振る舞うことができる。
本稿では,大規模なTTVに対してロバストな検出手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T17:15:52Z) - Identifying Planetary Transit Candidates in TESS Full-Frame Image Light
Curves via Convolutional Neural Networks [1.2583362454189522]
Transiting Exoplanet Survey Satelliteは、2年間の一次ミッションを通して、空の75%の恒星からの光を測定しました。
何百万ものTESS 30分のケイデンス光曲線は、通過する太陽系外惑星の探索で分析する。
本稿では,惑星通過信号の同定と偽陽性の除去を訓練する畳み込みニューラルネットワークを提案する。
我々は、我々のネットワークによって特定された181個の新しい惑星候補を提示する。
論文 参考訳(メタデータ) (2021-01-26T16:40:51Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
本研究では,低地光度銀河と人工物とを分離する問題に対する畳み込みニューラルネットワーク(CNN)の利用について検討する。
我々は、CNNが低地光度宇宙の研究に非常に有望な道を提供することを示した。
論文 参考訳(メタデータ) (2020-11-24T22:51:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。