論文の概要: Panopticon: a novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves
- arxiv url: http://arxiv.org/abs/2409.03466v1
- Date: Thu, 5 Sep 2024 12:21:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 20:50:03.320828
- Title: Panopticon: a novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves
- Title(参考訳): パノプティコン:PLATO光曲線における先行データフィルタリングなしで単一トランジットイベントを検出する新しいディープラーニングモデル
- Authors: H. G. Vivien, M. Deleuil, N. Jannsen, J. De Ridder, D. Seynaeve, M. -A. Carpine, Y. Zerah,
- Abstract要約: 我々は,高精度な光度曲線の遷移を検出するための深層学習モデルであるPanopticonを開発した。
シミュレーションされたPLATO光曲線を用いて, 惑星, 楕円形, 背景楕円形のいずれかのピクセルレベルでモデルを訓練した。
このアプローチは、未濾過光度曲線でさえも、地球カタログの25%以上を含む、我々のテスト人口の90%を回復することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To prepare for the analyses of the future PLATO light curves, we develop a deep learning model, Panopticon, to detect transits in high precision photometric light curves. Since PLATO's main objective is the detection of temperate Earth-size planets around solar-type stars, the code is designed to detect individual transit events. The filtering step, required by conventional detection methods, can affect the transit, which could be an issue for long and shallow transits. To protect transit shape and depth, the code is also designed to work on unfiltered light curves. We trained the model on a set of simulated PLATO light curves in which we injected, at pixel level, either planetary, eclipsing binary, or background eclipsing binary signals. We also include a variety of noises in our data, such as granulation, stellar spots or cosmic rays. The approach is able to recover 90% of our test population, including more than 25% of the Earth-analogs, even in the unfiltered light curves. The model also recovers the transits irrespective of the orbital period, and is able to retrieve transits on a unique event basis. These figures are obtained when accepting a false alarm rate of 1%. When keeping the false alarm rate low (<0.01%), it is still able to recover more than 85% of the transit signals. Any transit deeper than 180ppm is essentially guaranteed to be recovered. This method is able to recover transits on a unique event basis, and does so with a low false alarm rate. Thanks to light curves being one-dimensional, model training is fast, on the order of a few hours per model. This speed in training and inference, coupled to the recovery effectiveness and precision of the model make it an ideal tool to complement, or be used ahead of, classical approaches.
- Abstract(参考訳): 今後のPLATO光曲線の解析のために,高精度光度曲線の遷移を検出する深層学習モデルであるPanopticonを開発した。
PLATOの主な目的は、太陽型恒星の周りの温暖な地球規模の惑星を検出することであるため、このコードは個々のトランジットイベントを検出するように設計されている。
従来の検出方法が要求するフィルタリングステップは、長大かつ浅いトランジットの問題となるトランジットに影響を与える可能性がある。
トランジットの形状と深さを保護するため、符号はフィルターなしの光曲線でも動作するように設計されている。
シミュレーションされたPLATO光曲線を用いて, 惑星, 楕円形, 背景楕円形のいずれかの画素レベルでモデルを訓練した。
また、グラニュラー化、恒星の斑点、宇宙線など、さまざまなノイズもデータに含んでいます。
このアプローチは、未濾過光度曲線でさえも、地球カタログの25%以上を含む、我々のテスト人口の90%を回復することができる。
モデルはまた、軌道周期に関係なくトランジットを回復し、ユニークな事象に基づいてトランジットを回収することができる。
これらの数値は、誤報率1%を受け入れると得られる。
誤報率を低くする(0.01%)と、輸送信号の85%以上を回復することができる。
180ppm以上のトランジットは、基本的に回復することが保証されている。
この方法では、ユニークなイベントベースでトランジットを復元することができ、誤警報率を低く抑えることができる。
1次元の光曲線のおかげで、モデルトレーニングは高速で、1モデルにつき数時間の順序で行われる。
このトレーニングと推論のスピードは、モデルの回復効率と精度と相まって、古典的なアプローチを補完したり、利用したりするのに理想的なツールになります。
関連論文リスト
- NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning [1.2289361708127877]
我々は1次元畳み込みニューラルネットワーク(CNN)を構築し、楕円型バイナリやその他の偽陽性を潜在的な惑星候補から分離する。
我々のモデルは18分野のうち16分野の惑星の100%を保持し、一方は1つの惑星候補(0.3%)、残りのセクターは2つの惑星候補(0.6%)を誤ってフラグ付けする。
論文 参考訳(メタデータ) (2024-05-28T15:29:40Z) - Computing Transiting Exoplanet Parameters with 1D Convolutional Neural
Networks [0.0]
2つの1次元畳み込みニューラルネットワークモデルが提示される。
1つのモデルは完全な光曲線で動作し、軌道周期を推定する。
もう1つは位相折りたたみ光曲線を演算し、軌道の半主軸と惑星と恒星の半径比の正方形を推定する。
論文 参考訳(メタデータ) (2024-02-21T10:17:23Z) - One-dimensional Convolutional Neural Networks for Detecting Transiting
Exoplanets [39.58317527488534]
我々は、異なる望遠鏡とサーベイから得られる光曲線のトランジットを検出することができる人工ニューラルネットワークモデルを開発した。
我々は1次元畳み込みニューラルネットワークモデルを訓練し、検証するために、ケプラー望遠鏡(K2)の延長ミッションに期待されるものを模した人工光曲線を作成しました。
論文 参考訳(メタデータ) (2023-12-12T10:56:27Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - Decoupling the Curve Modeling and Pavement Regression for Lane Detection [67.22629246312283]
曲線に基づく車線表現は多くの車線検出法で一般的な手法である。
本稿では,曲線モデルと地上高さ回帰という2つの部分に分解することで,車線検出タスクに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-19T11:24:14Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Distinguishing a planetary transit from false positives: a
Transformer-based classification for planetary transit signals [2.2530415657791036]
交通信号の自動分類のための新しいアーキテクチャを提案する。
提案アーキテクチャは、トランジット信号と恒星パラメータの最も重要な特徴を捉えるように設計されている。
我々は,太陽系外惑星トランジット信号の認識に応用されたCNNに関する競合的な結果が得られることを示す。
論文 参考訳(メタデータ) (2023-04-27T15:43:25Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
マルチオブジェクト状態推定はロボットアプリケーションの基本的な問題である。
粒子法を用いて最大形パラメータを学習することを検討する。
自動運転車から収集した実データに本手法を適用した。
論文 参考訳(メタデータ) (2022-12-14T01:21:05Z) - Identifying Planetary Transit Candidates in TESS Full-Frame Image Light
Curves via Convolutional Neural Networks [1.2583362454189522]
Transiting Exoplanet Survey Satelliteは、2年間の一次ミッションを通して、空の75%の恒星からの光を測定しました。
何百万ものTESS 30分のケイデンス光曲線は、通過する太陽系外惑星の探索で分析する。
本稿では,惑星通過信号の同定と偽陽性の除去を訓練する畳み込みニューラルネットワークを提案する。
我々は、我々のネットワークによって特定された181個の新しい惑星候補を提示する。
論文 参考訳(メタデータ) (2021-01-26T16:40:51Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
本研究では,低地光度銀河と人工物とを分離する問題に対する畳み込みニューラルネットワーク(CNN)の利用について検討する。
我々は、CNNが低地光度宇宙の研究に非常に有望な道を提供することを示した。
論文 参考訳(メタデータ) (2020-11-24T22:51:08Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
まず,既存の回帰型回転検出器が抱える境界問題は,角周期性や角秩序によって引き起こされることを示した。
我々は、角予測タスクを回帰問題から分類問題に変換する。
得られた円形分布角分類問題に対して、まず、角度の周期性に対処し、隣り合う角度に対する誤差耐性を高めるために、円スムースラベル法を考案する。
論文 参考訳(メタデータ) (2020-03-12T03:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。