論文の概要: CF-OPT: Counterfactual Explanations for Structured Prediction
- arxiv url: http://arxiv.org/abs/2405.18293v1
- Date: Tue, 28 May 2024 15:48:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 17:59:58.605303
- Title: CF-OPT: Counterfactual Explanations for Structured Prediction
- Title(参考訳): CF-OPT:構造予測のための非現実的説明
- Authors: Germain Vivier--Ardisson, Alexandre Forel, Axel Parmentier, Thibaut Vidal,
- Abstract要約: ディープニューラルネットワークの最適化レイヤは構造化学習で人気を博し、さまざまなアプリケーションにおける最先端技術の改善に寄与している。
しかし、これらのパイプラインは2つの不透明な層(ディープニューラルネットワークのような非常に非線形な予測モデル)と、通常複雑なブラックボックス解決器である最適化層)で構成されているため、解釈性に欠ける。
我々のゴールは、このような手法の透明性を向上させることであり、対実的な説明を提供することである。
- 参考スコア(独自算出の注目度): 47.36059095502583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimization layers in deep neural networks have enjoyed a growing popularity in structured learning, improving the state of the art on a variety of applications. Yet, these pipelines lack interpretability since they are made of two opaque layers: a highly non-linear prediction model, such as a deep neural network, and an optimization layer, which is typically a complex black-box solver. Our goal is to improve the transparency of such methods by providing counterfactual explanations. We build upon variational autoencoders a principled way of obtaining counterfactuals: working in the latent space leads to a natural notion of plausibility of explanations. We finally introduce a variant of the classic loss for VAE training that improves their performance in our specific structured context. These provide the foundations of CF-OPT, a first-order optimization algorithm that can find counterfactual explanations for a broad class of structured learning architectures. Our numerical results show that both close and plausible explanations can be obtained for problems from the recent literature.
- Abstract(参考訳): ディープニューラルネットワークの最適化レイヤは構造化学習で人気を博し、さまざまなアプリケーションにおける最先端技術を改善している。
しかし、これらのパイプラインは2つの不透明な層で構成されており、ディープニューラルネットワークのような非常に非線形な予測モデルと、通常複雑なブラックボックス解決器である最適化層であるため、解釈不可能である。
我々のゴールは、このような手法の透明性を向上させることであり、対実的な説明を提供することである。
我々は、変分自己エンコーダに基づいて、反事実を得るための原則化された方法を構築し、潜在空間で働くことは、説明の妥当性という自然な概念につながる。
最終的に、VAEトレーニングの古典的な損失の変種を導入し、特定の構造化コンテキストにおけるパフォーマンスを改善しました。
これらはCF-OPTの基礎を提供しており、これは一階最適化アルゴリズムであり、幅広い階層の構造化学習アーキテクチャの対実的な説明を見つけることができる。
以上の結果から,近年の文献の問題点に対して,近い説明と妥当な説明の両立が可能であることが示唆された。
関連論文リスト
- Training morphological neural networks with gradient descent: some theoretical insights [0.40792653193642503]
形態素ネットワークに適用された微分に基づくアプローチとバックプロパゲーションの可能性と限界について検討する。
我々は、特に学習率に関する洞察と最初の理論的ガイドラインを提供する。
論文 参考訳(メタデータ) (2024-02-05T12:11:15Z) - Operator Learning Meets Numerical Analysis: Improving Neural Networks
through Iterative Methods [2.226971382808806]
演算子方程式の反復的手法に基づく理論的枠組みを開発する。
拡散モデルやAlphaFoldのような一般的なアーキテクチャは本質的に反復的演算子学習を採用していることを実証する。
本研究の目的は,数値解析から洞察を融合させることにより,ディープラーニングの理解を深めることである。
論文 参考訳(メタデータ) (2023-10-02T20:25:36Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Initialization and Regularization of Factorized Neural Layers [23.875225732697142]
ディープネットにおける因子化層の初期化と規則化の方法を示す。
これらのスキームが翻訳と教師なしプリトレーニングの両方のパフォーマンスを向上させる方法を示しています。
論文 参考訳(メタデータ) (2021-05-03T17:28:07Z) - Reframing Neural Networks: Deep Structure in Overcomplete
Representations [41.84502123663809]
本稿では,構造化過剰フレームを用いた表現学習のための統一フレームワークであるdeep frame approximationを提案する。
表現一意性と安定性に関連付けられたデータ非依存的なコヒーレンス尺度であるdeep frame potentialとの構造的差異を定量化する。
この超完全表現の確立された理論への接続は、原理化されたディープネットワークアーキテクチャ設計の新たな方向性を示唆している。
論文 参考訳(メタデータ) (2021-03-10T01:15:14Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
本稿では、残差接続と畳み込み層の両方を受け入れる一般化微分動的プログラミング(DDP)ニューラルアーキテクチャを提案する。
得られた最適制御表現は、トレーニング残余ネットワークを、状態拡張システム上での協調的軌道最適化と解釈できるゲーム論的視点を許容する。
論文 参考訳(メタデータ) (2020-07-17T10:19:17Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。