論文の概要: Bias in Motion: Theoretical Insights into the Dynamics of Bias in SGD Training
- arxiv url: http://arxiv.org/abs/2405.18296v2
- Date: Sun, 22 Dec 2024 19:59:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:53:09.484868
- Title: Bias in Motion: Theoretical Insights into the Dynamics of Bias in SGD Training
- Title(参考訳): 運動のバイアス:SGDトレーニングにおけるバイアスのダイナミクスに関する理論的考察
- Authors: Anchit Jain, Rozhin Nobahari, Aristide Baratin, Stefano Sarao Mannelli,
- Abstract要約: 機械学習システムは、データの望ましくない特徴を活用してバイアスを取得し、異なるサブポピュレーションの精度に影響を与えることが多い。
本稿では, ガウス混合モデルを用いて, 教師学生によるデータサブポピュレーションのモデル化におけるバイアスの進化について検討する。
この発見を公平性と堅牢性に適用することで、不均一なデータと突発的な特徴がバイアスを発生し増幅する方法について、いつ、どのように、どのように、どのようにして、そして、どのようにして、そのバイアスを増大させるかを説明します。
- 参考スコア(独自算出の注目度): 7.5041863920639456
- License:
- Abstract: Machine learning systems often acquire biases by leveraging undesired features in the data, impacting accuracy variably across different sub-populations. Current understanding of bias formation mostly focuses on the initial and final stages of learning, leaving a gap in knowledge regarding the transient dynamics. To address this gap, this paper explores the evolution of bias in a teacher-student setup modeling different data sub-populations with a Gaussian-mixture model. We provide an analytical description of the stochastic gradient descent dynamics of a linear classifier in this setting, which we prove to be exact in high dimension. Notably, our analysis reveals how different properties of sub-populations influence bias at different timescales, showing a shifting preference of the classifier during training. Applying our findings to fairness and robustness, we delineate how and when heterogeneous data and spurious features can generate and amplify bias. We empirically validate our results in more complex scenarios by training deeper networks on synthetic and real datasets, including CIFAR10, MNIST, and CelebA.
- Abstract(参考訳): 機械学習システムは、データ内の望ましくない特徴を活用してバイアスを取得し、異なるサブ人口間で精度が変動する。
バイアス形成の現在の理解は、主に学習の初期段階と最終段階に焦点を当て、過渡的なダイナミクスに関する知識の欠如を残している。
このギャップに対処するために,ガウス混合モデルを用いて異なるデータサブポピュレーションをモデル化する教師学生設定におけるバイアスの進化について検討する。
この設定において線形分類器の確率勾配勾配ダイナミクスを解析的に記述し、これを高次元で正確に証明する。
特に, サブ集団の異なる特性が, 異なる時間尺度におけるバイアスにどのように影響するかを明らかにするとともに, 学習中の分類器の好みの変化を示す。
この発見を公平性と堅牢性に適用することで、不均一なデータと突発的な特徴がバイアスを発生し増幅する方法について、いつ、どのように、どのように、どのようにして、そして、どのようにして、そのバイアスを増大させるかを説明します。
我々は、CIFAR10、MNIST、CelebAなどの合成および実際のデータセット上で、より深いネットワークをトレーニングすることで、より複雑なシナリオで結果を実証的に検証する。
関連論文リスト
- Will the Inclusion of Generated Data Amplify Bias Across Generations in Future Image Classification Models? [29.71939692883025]
画像分類タスクにおける生成データの影響について,特にバイアスに着目して検討する。
数百の実験がColorized MNIST、CIFAR-20/100、Hard ImageNetデータセットで実施されている。
本研究は, 実世界の応用において, 合成データの公平性に関する議論が進行中であることを示すものである。
論文 参考訳(メタデータ) (2024-10-14T05:07:06Z) - Model Debiasing by Learnable Data Augmentation [19.625915578646758]
本稿では,トレーニングを正規化可能なデータ拡張戦略を備えた,新しい2段階学習パイプラインを提案する。
合成および現実的なバイアス付きデータセットの実験は、最先端の分類精度を示し、競合する手法より優れている。
論文 参考訳(メタデータ) (2024-08-09T09:19:59Z) - FedUV: Uniformity and Variance for Heterogeneous Federated Learning [5.9330433627374815]
フェデレーション学習は、広く分散されたデータでニューラルネットワークをトレーニングするための有望なフレームワークである。
最近の研究によると、ネットワークの最終層が局所バイアスの傾向が最も大きいためである。
凍結重量が一定の特異値をもたらすという観測によって動機付けられた重みにSVDを適用して分類器の訓練力学を考察する。
論文 参考訳(メタデータ) (2024-02-27T15:53:15Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - Class-Balancing Diffusion Models [57.38599989220613]
クラスバランシング拡散モデル(CBDM)は、分散調整正規化器をソリューションとして訓練する。
提案手法は,CIFAR100/CIFAR100LTデータセットで生成結果をベンチマークし,下流認識タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-30T20:00:14Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Learning Debiased Models with Dynamic Gradient Alignment and
Bias-conflicting Sample Mining [39.00256193731365]
ディープニューラルネットワークは、堅牢性、一般化、公正性をモデル化するのに有害なデータセットバイアスに悩まされている。
難解な未知のバイアスと戦うための2段階のデバイアス方式を提案する。
論文 参考訳(メタデータ) (2021-11-25T14:50:10Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。