Is a 3D-Tokenized LLM the Key to Reliable Autonomous Driving?
- URL: http://arxiv.org/abs/2405.18361v1
- Date: Tue, 28 May 2024 16:57:44 GMT
- Title: Is a 3D-Tokenized LLM the Key to Reliable Autonomous Driving?
- Authors: Yifan Bai, Dongming Wu, Yingfei Liu, Fan Jia, Weixin Mao, Ziheng Zhang, Yucheng Zhao, Jianbing Shen, Xing Wei, Tiancai Wang, Xiangyu Zhang,
- Abstract summary: We introduce DETR-style 3D perceptrons as 3D tokenizers, which connect LLM with a one-layer linear projector.
Despite its simplicity, Atlas demonstrates superior performance in both 3D detection and ego planning tasks.
- Score: 66.6886931183372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid advancements in Autonomous Driving (AD) tasks turned a significant shift toward end-to-end fashion, particularly in the utilization of vision-language models (VLMs) that integrate robust logical reasoning and cognitive abilities to enable comprehensive end-to-end planning. However, these VLM-based approaches tend to integrate 2D vision tokenizers and a large language model (LLM) for ego-car planning, which lack 3D geometric priors as a cornerstone of reliable planning. Naturally, this observation raises a critical concern: Can a 2D-tokenized LLM accurately perceive the 3D environment? Our evaluation of current VLM-based methods across 3D object detection, vectorized map construction, and environmental caption suggests that the answer is, unfortunately, NO. In other words, 2D-tokenized LLM fails to provide reliable autonomous driving. In response, we introduce DETR-style 3D perceptrons as 3D tokenizers, which connect LLM with a one-layer linear projector. This simple yet elegant strategy, termed Atlas, harnesses the inherent priors of the 3D physical world, enabling it to simultaneously process high-resolution multi-view images and employ spatiotemporal modeling. Despite its simplicity, Atlas demonstrates superior performance in both 3D detection and ego planning tasks on nuScenes dataset, proving that 3D-tokenized LLM is the key to reliable autonomous driving. The code and datasets will be released.
Related papers
- VLM-Grounder: A VLM Agent for Zero-Shot 3D Visual Grounding [57.04804711488706]
3D visual grounding is crucial for robots, requiring integration of natural language and 3D scene understanding.
We present VLM-Grounder, a novel framework using vision-language models (VLMs) for zero-shot 3D visual grounding based solely on 2D images.
arXiv Detail & Related papers (2024-10-17T17:59:55Z) - LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image [72.14973729674995]
Current 3D perception methods, particularly small models, struggle with processing logical reasoning, question-answering, and handling open scenario categories.
We propose solutions: Spatial-Enhanced Local Feature Mining for better spatial feature extraction, 3D Query Token-Derived Info Decoding for precise geometric regression, and Geometry Projection-Based 3D Reasoning for handling camera focal length variations.
arXiv Detail & Related papers (2024-08-14T10:00:16Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
This survey provides a comprehensive overview of the methodologies enabling large language models to process, understand, and generate 3D data.
Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs)
It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue.
arXiv Detail & Related papers (2024-05-16T16:59:58Z) - OmniDrive: A Holistic LLM-Agent Framework for Autonomous Driving with 3D Perception, Reasoning and Planning [68.45848423501927]
We propose a holistic framework for strong alignment between agent models and 3D driving tasks.
Our framework starts with a novel 3D MLLM architecture that uses sparse queries to lift and compress visual representations into 3D.
We propose OmniDrive-nuScenes, a new visual question-answering dataset challenging the true 3D situational awareness of a model.
arXiv Detail & Related papers (2024-05-02T17:59:24Z) - Regulating Intermediate 3D Features for Vision-Centric Autonomous
Driving [26.03800936700545]
We propose to regulate intermediate dense 3D features with the help of volume rendering.
Experimental results on the Occ3D and nuScenes datasets demonstrate that Vampire facilitates fine-grained and appropriate extraction of dense 3D features.
arXiv Detail & Related papers (2023-12-19T04:09:05Z) - Visual Reinforcement Learning with Self-Supervised 3D Representations [15.991546692872841]
We present a unified framework for self-supervised learning of 3D representations for motor control.
Our method enjoys improved sample efficiency in simulated manipulation tasks compared to 2D representation learning methods.
arXiv Detail & Related papers (2022-10-13T17:59:55Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.